题目

思博状压写不出是不是没救了呀

首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关

我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们考虑从这个方面入手

我们求出所有的最大独立集,考虑求出有多少种考虑顺序能够恰好得到这个最大独立集

设当前已经考虑的点的状态为\(S\)时的方案数为\(dp_S\)

我们考虑枚举出一个不在状态\(S\)的点\(x\)

分两种情况

  1. \(x\)是最大独立集的点,所以我们可以把这个点加入\(S\)

  2. \(x\)不是最大独立集的点,我们发现只有当和这个点相邻的且属于最大独立集的点加入\(S\),我们才能加入\(x\),这样\(x\)才能不被加入独立集

于是我们这样做就好啦,复杂度是\(O(2^nn^2)\),卡卡常数就过去啦

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define lb(x) ((x)&(-x))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=(1<<20)+5;
const int mod=998244353;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int st[maxn][21],top[maxn];
int cnt[maxn],f[maxn],vis[22],tot,ans,inv[22];
int n,m,N,d[22],g[maxn],dp[maxn],lg[maxn];
inline int chk(int S) {
int t=S;
while(t) {
int x=lg[lb(t)];
t-=lb(t);
if(d[x]&S) return 0;
}
return 1;
}
inline void get(int S,int p) {
int t=S;
while(t) {
int x=lg[lb(t)];
t-=lb(t);st[p][++top[p]]=x;
}
}
inline int qm(int a) {return a>=mod?a-mod:a;}
inline int calc(int S) {
int t=S;memset(vis,0,sizeof(vis));
while(t) {
int x=lg[lb(t)];
t-=lb(t);vis[x]=1;
}
memset(dp,0,sizeof(dp));
dp[0]=1;
for(re int i=0;i<N;i++) {
for(re int j=1;j<=top[i];j++) {
int x=st[i][j];
if(vis[x]||(d[x]&S&i))
dp[i|(1<<(x-1))]=qm(dp[i|(1<<(x-1))]+dp[i]);
}
}
return dp[N];
}
int main() {
n=read(),m=read();N=(1<<n)-1;
for(re int i=1;i<=N;i++) cnt[i]=cnt[i>>1]+(i&1);
for(re int x,y,i=1;i<=m;i++) {
x=read(),y=read();
d[x]|=(1<<(y-1));d[y]|=(1<<(x-1));
}
for(re int i=1;i<=n;i++) lg[1<<(i-1)]=i;
for(re int i=0;i<=N;i++) get(N^i,i);
for(re int i=1;i<=N;i++) f[i]=chk(i);
for(re int i=1;i<=N;i++) if(f[i]&&cnt[i]>cnt[ans]) ans=i;
for(re int i=1;i<=N;i++)
if(f[i]&&cnt[i]==cnt[ans])
tot=qm(tot+calc(i));
inv[1]=1;
for(re int i=2;i<=n;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=2;i<=n;i++) tot=(1ll*tot*inv[i])%mod;
printf("%d\n",tot);
return 0;
}

至于\(O(2^nn)\)的正解好像很神仙的样子,大概是加入一个点的时候把和它相连的点都加入进来,转移的过程中还要乘上排列数,一看我就不会,于是就不写啦

「PKUWC2018」随机算法的更多相关文章

  1. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  2. LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】

    LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...

  3. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  4. 【LOJ】 #2540. 「PKUWC2018」随机算法

    题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...

  5. loj#2540. 「PKUWC2018」随机算法

    传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...

  6. LOJ2540「PKUWC2018」随机算法

    又是一道被咕了很久的题 貌似从WC2019之前咕到了现在 我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s 然后转移O(n)枚举加进来的点就比较简单啦 这个的复杂度是O(2^n*n^2 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  9. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

随机推荐

  1. T-SQL学习的笔记,以备查阅

    create database MyDatabseOne; --创建数据库 drop database MydatabaseOne; --删除数据库; --如果直接点"执行"将是执 ...

  2. Linux root用户不能通过SSH连接的问题

    http://jingyan.baidu.com/article/fd8044fad48fc95031137a85.html 最近在虚拟机安装Ubuntu之后,通过普通ssh远程连接的时候明明输入了正 ...

  3. Oracle安装后遇到错误:The Network Adapter could not establish the connection

    http://note.youdao.com/noteshare?id=e6baee7ea7b7f60d7a265124e2bdd46c&sub=988945C6DDE843D5A7D6588 ...

  4. Java虚拟机基础知识你知道多少?

    http://www.cnblogs.com/qlky/p/7401841.html java虚拟机结构 http://liuwangshu.cn/java/jvm/1-runtime-data-ar ...

  5. element-ui中使用font-awesome字体图标

    element-ui提供的字体图标是很少的,所以我们需要集成其它图标来使用,nodejs的集成官方有说明,这里说明一下非nodejs开发集成图标 首先下载fontawesome,需要更改里面图标前缀, ...

  6. CodeForces760B

    B. Frodo and pillows time limit per test:1 second memory limit per test:256 megabytes input:standard ...

  7. Implementation:Dijkstra

    #include <iostream> #include <cstdlib> #include <utility> #include <queue> u ...

  8. arcgis 加载高德地图 es6的方式

    目前很多arcgis 加载高德地图是dojo的方式 外部引入文件,现在改成这种方式 /** * Created by Administrator on 2018/5/14 0014. */ impor ...

  9. 实现ListView的加载更多的效果,如何将按钮布局到始终在ListView的最后一行

    实现方式一:在代码中实现: 1,在一个布局中定义一个Button,在活动中加载Button的父布局, 例如:View bottomView = getLayoutInflater().inflate( ...

  10. Pig autocomplete 自动补全

    在pig的grunt环境下,按TAB键可以自动补全命令,用户可以添加自己的补全信息. 在conf目录下创建autocomplete文件,添加如下内容: hdfs://vm1:8020/   在grun ...