Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17164    Accepted Submission(s): 5651
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.



Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).



Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).



But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
/*
** dp[i][j]表示以第i个数字结尾且选定并分成j份能得到的最大值。转移方程为
** dp[i][j] = max(dp[i-1][j], max(dp[1...i-1][j-1])) + arr[i];
** 假设开二维数组的话内存会超,所以得用滚动数组省空间。preMax[j]保存
** 上一轮得到的dp[1...i][j]中的最大值,ans每次读取当前dp数组最大值
** 用以更新preMax数组,最后一轮循环后ans保存的就是答案。
*/ #include <stdio.h>
#include <string.h> #define maxn 1000010
#define inf 0x7fffffff int dp[maxn], preMax[maxn], arr[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int main() {
int n, m, i, j, ans;
while(scanf("%d%d", &n, &m) == 2) {
for(i = 1; i <= m; ++i) {
scanf("%d", &arr[i]);
preMax[i] = dp[i] = 0;
}
preMax[0] = dp[0] = 0;
for(j = 1; j <= n; ++j) { // 分成j份
ans = -inf;
for(i = j; i <= m; ++i) {
dp[i] = max(dp[i-1], preMax[i-1]) + arr[i];
preMax[i-1] = ans;
ans = max(ans, dp[i]);
}
}
printf("%d\n", ans);
}
return 0;
}

HDU1024 Max Sum Plus Plus 【DP】的更多相关文章

  1. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  2. hdu1024 Max Sum Plus Plus 滚动dp

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 1024 Max Sum Plus Plus【DP,最大m子段和】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意: 给定序列,给定m,求m个子段的最大和. 分析: 设dp[i][j]为以第j个元素结尾的 ...

  4. HDU1024 Max Sum Plus Plus(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...

  5. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  6. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  7. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  8. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  9. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

随机推荐

  1. PHP PSR基本代码规范(中文版)

    PSR-1 基本代码规范 本篇规范制定了代码基本元素的相关标准,以确保共享的PHP代码间具有较高程度的技术互通性. 关键词 “必须”("MUST").“一定不可/一定不能”(&qu ...

  2. 【PAT Advanced Level】1013. Battle Over Cities (25)

    这题给定了一个图,我用DFS的思想,来求出在图中去掉某个点后还剩几个相互独立的区域(连通子图). 在DFS中,每遇到一个未访问的点,则对他进行深搜,把它能访问到的所有点标记为已访问.一共进行了多少次这 ...

  3. Windows下创建文件的权限问题

    在Windows下如果在某个目录下建立一个文件,那么新建立的文件会默认继承该目录的所有权限(父子关系) 如果将一个文件从一个目录移动到到另一个目录下,那么该文件的权限并不会继承自新目录的权限而是还保留 ...

  4. [Webpack] Externalize Dependencies to be Loaded via CDN with webpack

    We can separate our custom application code from the common libraries we leverage, such as React and ...

  5. 8. 利用反射机制, ListArray,intent来实现多Activity的切换

    package com.example.thenewboston; import android.app.ListActivity; import android.content.Intent; im ...

  6. linux下如何查看所有的用户和组信息?

    /etc/group  文件是用户组的配置文件. /etc/passwd 文件是用户的配置文件. 使用cat.more.less.head.tail以及vim等命令都可以查看.修改这两个配置文件. 说 ...

  7. Matlab实现:图像边缘提取

    1. 边缘提取算法 方法一:一阶微分算子 Sobel算子 Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,Sobel算子对边缘定位不是很准确,图像的边缘不止一个像素. Roberts算子 ...

  8. Android 逆向project 实践篇

    Android逆向project 实践篇 上篇给大家介绍的是基础+小Demo实践. 假设没有看过的同学能够进去看看.(逆向project 初篇) 本篇主要给大家介绍怎样反编译后改动源代码, 并打包执行 ...

  9. MySQL优化小案例:key_buffer_size

    key_buffer_size是对MyISAM表性能影响最大的一个参数,下面一台以MyISAM为主要存储引擎服务器的配置: mysql> SHOW VARIABLES LIKE '%key_bu ...

  10. 【Oracle】将表名与字段名连接成一行数据展示,字段名使用顿号的分隔

    select '<'||a.comments||'>:'||replace(wmsys.wm_concat(b.comments),',','.')||'.' as pjzf from u ...