GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4141    Accepted Submission(s): 1441

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
 /*
题意:区间x属于[1,A] , y属于区间[1,B]
求最大公约数是K,即gcd(x,y)=K。
并且[1,3]和[3,1]属于同一种情况。 思路:HDU 4135 Co-prime 的思路在这一题有用。
它的题意:区间[A,B],与整数N的互素的个数
对于这一到题目:gcd(x,y)=k.
要满足最大公约数是K,可以转化为
[1,A],[1,B]==>[1,A/K],[1,B/K] 求互素的个数。
好像有点难以想到。????
{{
借鉴一下别人是说法。会更明白
gcd(x, y) == k 说明x,y都能被k整除,但是能被k整除的未必gcd=k ,
必须还要满足互质关系.
问题就转化为了求1~a/k 和 1~b/k间互质对数的问题
}}
这样的话,如何处理呢?
题意要求[1,3]和[3,1]不能重复。
对于区间[1,A/K],[1,B/K] 看成==>[1,a],[1,b] 有几种情况
1____________a
1____________________b 1____________a
1________b 1____________a
1____________b 这三种情况。我们来个判断,总是让a<=b,用b做更大的值。就会变成 1—————————a
1—————————————————b
在求取的过程中也是采取这样的规则。
[?,b1];确定后一位数。表示在[1,a]中与b1互质的个数。
那么就很好的避免了[1,3],[3,1]的情况了。
求取总和sum=sum1+sum2;
sum1=欧拉函数值[1,a]; 想想为什么?
sum2={枚举a+1--->b,与区间[1,a]互质的个数};
sum2就和以前的一题有关系了,要用欧拉函数+容斥定理处理。
具体的参考:http://www.cnblogs.com/tom987690183/p/3246197.html */ #include<stdio.h>
#include<string.h>
#include<stdlib.h> int prime[],len;
bool s[];
int opl[];
int Que[];
int f[],flen; void make_prime() //素数打表
{
int i,j;
len=;
for(i=;i<=;i++)//刚开始写错,i*i<=100000;⊙﹏⊙b汗
if(s[i]==false)
{
prime[++len]=i;
for(j=i*;j<=;j=j+i)
s[j]=true;
}
} void make_Euler() //欧拉函数打表。
{
int i,j;
make_prime();
for(i=;i<=;i++)
opl[i]=i;
opl[]=;
for(i=;i<=len;i++)
for(j=prime[i];j<=;j=j+prime[i])
opl[j]=opl[j]/prime[i]*(prime[i]-);
} void make_dEuler(int n) //单点欧拉的素因子。
{
int i;
flen=;
for(i=;i*i<=n;i++)
{
if(n%i==)
{
while(n%i==)
n=n/i;
f[++flen]=i;
}
}
if(n!=)
f[++flen]=n;
} int Capacity(int m)
{
int i,j,t=,sum=,k;
Que[t++]=-;
for(i=;i<=flen;i++)
{
k=t;
for(j=;j<k;j++)
Que[t++]=-*Que[j]*f[i];
}
for(i=;i<t;i++)
sum=sum+m/Que[i];
return sum;
} void sc()//输出函数,测试用的。
{
int i;
for(i=;i<=;i++)
printf("%d ",opl[i]);
printf("\n");
} __int64 make_ini(int b,int c,int k)
{
int i,x,y,tmp;
__int64 sum=;
x=b/k;y=c/k;//加特判的用处。不能除0
if(x>y)
{
tmp=x;
x=y;
y=tmp;
}
for(i=;i<=x;i++)
sum=sum+opl[i];//第一步
for(i=x+;i<=y;i++)//第二步,枚举
{
make_dEuler(i);
sum=sum+(x-Capacity(x));
}
//sc();
return sum; } int main()
{
int T,a,b,c,d,k,i;
__int64 sum;
make_Euler();
while(scanf("%d",&T)>)
{
for(i=;i<=T;i++)
{
sum=;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==) //特判,否则会Runtime Error (INTEGER_DIVIDE_BY_ZERO)
{
sum=;
}
else sum=make_ini(b,d,k);
printf("Case %d: %I64d\n",i,sum); }
}
return ;
}
下面再介绍一种方法。莫比乌斯反演
GCD(a,b) = d;
可以转化为
GCD(a/d,b/d) = 1;
设f(d)为(a,b) = d的种类数
   F(d)为(a,b) = d 的倍数 的种类数。
例如
F(2) = (a/2)*(b/2);
F(3) = (a/3)*(b/3);
mu[i]可以打表求出。
关于一个优化在于a/i = a/(i+k) && b/i = b/(i+k);
此时我们能节省时间来求。详见代码部分
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef __int64 LL; const int maxn = 1e5+;
bool s[maxn];
int prime[maxn],len = ;
int mu[maxn];
int sum1[maxn];
void init()
{
memset(s,true,sizeof(s));
mu[] = ;
for(int i=;i<maxn;i++)
{
if(s[i] == true)
{
prime[++len] = i;
mu[i] = -;
}
for(int j=;j<=len && (long long)prime[j]*i<maxn;j++)
{
s[i*prime[j]] = false;
if(i%prime[j]!=)
mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
for(int i=;i<maxn;i++)
sum1[i] = sum1[i-]+mu[i];
}
LL solve(int a,int b)
{
LL sum = ;
for(int i=,la = ;i<=a;i++,i = la+)
{
la = min(a/(a/i),b/(b/i)); //优化部分
sum = sum + ((LL)(a/i))*(b/i)*(sum1[la]-sum1[i-]);
}
return sum;
}
int main()
{
int T,l,a,b,d;
init();
scanf("%d",&T);
for(int t=;t<=T;t++)
{
scanf("%d%d%d%d%d",&l,&a,&l,&b,&d);
LL sum = ;
if(d==) ;
else{
if(a>b) swap(a,b);
sum = solve(a/d,b/d);
sum = sum - solve(a/d,a/d)/;
}
printf("Case %d: %I64d\n",t,sum);
}
return ;
}
 

HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演的更多相关文章

  1. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  2. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  3. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  4. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. hdu1695(莫比乌斯)或欧拉函数+容斥

    题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...

  9. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

随机推荐

  1. java入门——第一个java程序

    来源:https://course.tianmaying.com/java-basic%2Bjava-hello-world# java的基础特征 1 Java是一种大小写敏感的语言 2 程序的文件名 ...

  2. 四,mysql优化——sql语句优化之索引二

    1,在什么列适合添加索引 (1)较频繁的作为查询条件字段应该添加索引 select * from emp where empid = 2; (2)唯一性太差的字段不适合添加索引,即时频繁作为查询条件. ...

  3. webpack 4 入坑及爬坑记录

    一.安装 在本机安装好nodejs的基础上,window操作系统,cmd打开控制台,添加到创建的文件夹下 npm init //初始化npm npm install webpack --save-de ...

  4. java验证身份证合理性

    package com.tiantian.util; import java.util.Calendar;import java.util.HashMap;import java.util.Map;i ...

  5. 00-python概述。

    人生苦短,我用Python. -发展历史: - 1989年,由Guido van Rossum开始开发, - 1991年,发布第一个公开发行版,第一个Python编译器(同时也是解释器)诞生. - 2 ...

  6. Alamofire源码导读三:返回的处理逻辑

     以DataRequest 为例子. 最简单的返回 URLSession 有一个方法,可以构建 URLSessionDataTask func dataTask(with url: URL, com ...

  7. 手机端API接口验证及参数签名验证

    问题背景: 后端服务对手机APP端开放API,没有基本的校验就是裸奔,别人抓取接口后容易恶意请求,不要求严格的做的安全,但是简单的基础安全屏障是要建立的,再配合HTTPS使用,这样使后端服务尽可能的安 ...

  8. Winform—C#读写config配置文件

    现在FrameWork2.0以上使用的是:ConfigurationManager或WebConfigurationManager.并且AppSettings属性是只读的,并不支持修改属性值. 一.如 ...

  9. liunx相关指令

    修改网卡命名规范 ​ a 如何进入到救援模式 修改网卡 1.修改配置文件名称 /etc/sysconfig/network-scripts/
 名称为:ifcfg-xxx 2.修改配置文件内的 dev ...

  10. 前后端分离最佳实现,使用Nuxt.js快速搭建单页SSR应用

    通常我们搭建ssr应用需要自己选择多个组件集成到一起 webpack babel loaders router server-render 各种入口配置等 如果是基于vue+vuex+vue-rout ...