HDU2883_kebab
很好的题目。
有不多于200个任务,每个任务要在si到ei这个时间段内完成,每个任务的任务量是ti*ni,只有一台机器,且其单位时间内可完成的任务量为m。
现在问你,能否使所有的任务全部在规定的时间段内完成。
首先把所有的时间都提取出来,排序,得到2*n-1个时间区间。
网络流建模。首先创建一个超级源点和超级汇点。源点连接n个任务,与每个任务的边的容量为ni*ti,汇点连接2*n-1个时间区间,容量为时间长度与m的乘积。同时在任务和时间区间之间也需要连边,如果某个任务的时间和时间区间有公共时间段,那么他们之间连一条边,边容量为公共时间长度乘以m。这样我们只需要求整个网络的最大流,看看是否与总的工作量相等即可。
很有意思。嘿嘿
召唤代码君:
#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <vector>
#define maxn 777
#define Inf ~0U>>1
using namespace std; int c[maxn][maxn],d[maxn],can[maxn];
int n,m,s,t,tot,ans;
int ni[maxn],ti[maxn],si[maxn],ei[maxn];
int T[maxn],N;
vector<int> v[maxn]; void _init()
{
s=1,t=1+3*n,N=0,ans=tot=0;
for (int i=1; i<=1+3*n; i++)
{
v[i].clear();
for (int j=1; j<=1+3*n; j++) c[i][j]=0;
}
} void graph_build()
{
int L,R;
sort(T+1,T+1+2*n);
for (int i=1; i<=n; i++)
{
c[1][i+1]=ni[i]*ti[i];
v[1].push_back(i+1),v[i+1].push_back(1);
}
for (int i=1; i<2*n; i++)
{
c[n+1+i][3*n+1]=(T[i+1]-T[i])*m;
v[n+1+i].push_back(3*n+1),v[3*n+1].push_back(n+1+i);
}
for (int i=1; i<=n; i++)
for (int j=1; j<2*n; j++)
{
L=max(si[i],T[j]);
R=min(ei[i],T[j+1]);
if (L>=R) continue;
c[1+i][n+1+j]=(R-L)*m;
v[1+i].push_back(n+1+j),v[n+1+j].push_back(1+i);
}
} void bfs()
{
for (int i=s; i<=t; i++) d[i]=999999,can[i]=0;
queue<int> Q;
Q.push(t);
d[t]=0;
while (!Q.empty())
{
int cur=Q.front();
Q.pop();
for (unsigned i=0; i<v[cur].size(); i++)
{
if (c[v[cur][i]][cur]<=0) continue;
if (d[cur]+1<d[v[cur][i]])
{
d[v[cur][i]]=d[cur]+1;
Q.push(v[cur][i]);
}
}
}
} int dfs(int cur,int num)
{
if (cur==t) return num;
int k,tmp=num;
for (unsigned i=0; i<v[cur].size(); i++)
{
if (c[cur][v[cur][i]]<=0 || d[v[cur][i]]+1!=d[cur] || can[v[cur][i]]) continue;
k=dfs(v[cur][i],min(num,c[cur][v[cur][i]]));
if (k) c[cur][v[cur][i]]-=k,c[v[cur][i]][cur]+=k,num-=k;
}
if (num) can[cur]=1;
return tmp-num;
} int Dinic()
{
for (bfs(); d[s]<3*n+1; bfs()) ans+=dfs(1,Inf);
return ans;
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
_init();
for (int i=1; i<=n; i++)
{
scanf("%d%d%d%d",&si[i],&ni[i],&ei[i],&ti[i]);
tot+=ni[i]*ti[i];
T[++N]=si[i],T[++N]=ei[i];
}
graph_build();
if (Dinic()==tot) puts("Yes");
else puts("No");
}
return 0;
}
HDU2883_kebab的更多相关文章
随机推荐
- 闭包初体验 -《JavaScript面向对象编程指南》
下面是我对闭包的理解:(把他们整理出来,整理的过程也是在梳理) 参考<JavaScript面向对象编程指南> 1.首先,在理解闭包之前: 我们首先应该清楚下作用域和作用域链 作用域:每个函 ...
- css选择器分类与作用
本文旨在总结css中各种选择器及其相应用途(持续更新) 通配符(全局)选择器 样式:*{} 示例: 总结:选定文档中所有类型的对象,如图所示写在css样式文件开头用来定义全局通用的一些属性.font- ...
- AxWebBrowser 实现的多进程浏览器 (一)
我们使用 C#/VB.NET 进行 Trident 内核浏览器编程,大多都是单进程的,当打开的页面较多时比较容易出现卡死等情况. 单进程浏览器简单示例: Public Class formBrowse ...
- TensorFlow Python3.7环境下的源码编译(三)编译
这里要为仅支持 CPU 的 TensorFlow 构建一个 pip 软件包,需要调用以下命令: $ bazel build --cxxopt="-D_GLIBCXX_USE_CXX11_AB ...
- SICP读书笔记 3.3
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- SSH免密登录(并且免yes交互)
问题描述:主机A使用ssh协议远程主机B,默认会开启口令认证,即输入主机B对应用户的登录密码,并且第一次登录时,主机A需验证是否接受来自主机B的公钥,输入"yes/no"完成交互. ...
- linux 安装配置kafka脚本
安装脚本 #!/bin/bash # auto install kafka echo "========= Start to install kafka ==============&quo ...
- Linux下oracle启动/关闭监听(bash:lsnrctl:command not found)
打开终端 切换帐户 # su - Oracle 启动监听 $ lsnrctl start 关闭监听 $ lsnrctl stop 切换帐户一定要加 "-" 否则会出现: bas ...
- mybatis批量插入oracle
<insert id="batchInsert" parameterType="java.util.List"> INSERT INTO TEST( ...
- 团队博客作业week1——成员介绍
我们小组的成员由六人组成,其中包括一名七班的韩国同学. 1.玉钟焕同学 玉钟焕是七班的同学.由于老师为了让我们尽早体验与不熟悉的同学共同工作的环境而提出团队需要跨行政班.于是我们便邀请钟焕同学加入我们 ...