P6800-[模板]Chirp Z-Transform【NTT】
正题
题目链接:https://www.luogu.com.cn/problem/P6800
题目大意
给出一个\(n\)此多项式\(P\),对于\(k\in[0,m-1]\)所有的求\(P(c^k)\)
输出答案对\(998244353\)取模
\(1\leq n,m\leq 10^6\)
解题思路
\]
然后根据\(i\times n=\binom{i+n}{2}-\binom{i}{2}-\binom{n}{2}\)有
\]
然后这是一个反着卷积的形式,直接上NTT就好了
时间复杂度\(O(n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=4e6+10,P=998244353;
ll n,m,c,a[N],r[N],F[N],G[N];
ll power(ll x,ll b){
ll ans=1;b%=P-1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll C(ll n)
{return n*(n-1)/2;}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll tmp=power(3,(P+1)/p),len=p>>1;
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&c,&m);
ll inv=power(c,P-2);
for(ll i=0;i<n;i++)
scanf("%lld",&a[i]);
for(ll i=0;i<n+m;i++)
F[i]=power(c,C(n+m-i-1));
for(ll i=0;i<n;i++)
G[i]=a[i]*power(inv,C(i))%P;
ll len=1;
while(len<n+m)len<<=1;
for(ll i=0;i<len;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(len>>1):0);
NTT(F,len,1);NTT(G,len,1);
for(ll i=0;i<len;i++)F[i]=F[i]*G[i]%P;
NTT(F,len,-1);
for(ll i=n+m-1;i>=n;i--)
printf("%lld ",F[i]*power(inv,C(n+m-i-1))%P);
return 0;
}
P6800-[模板]Chirp Z-Transform【NTT】的更多相关文章
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- [洛谷P4245]【模板】任意模数NTT
题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- DevExpress SpreadSheet报表模板设置 z
DevExpres SpreadSheetControl报表模板设置,这一个还是挺牛逼的,字段绑定直接在单元格里面设置公式(=Field("字段名")),当然直接拖更方便, 跟xt ...
- Luogu 4245 【模板】任意模数NTT
这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法. 发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可 ...
- 洛谷4245:【模板】任意模数NTT——题解
https://www.luogu.org/problemnew/show/P4245 给两个多项式,求其乘积,每个系数对p取模. 参考: 代码与部分理解参考https://www.luogu.org ...
- 洛谷 4245 【模板】任意模数NTT——三模数NTT / 拆系数FFT
题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long lon ...
- P4245 【模板】任意模数NTT
Luogu4245 只要做三次的NTT,快的飞起 普通NTT,做9次 #include<cstdio> #include<cstring> #include<iostre ...
- 【模板】任意模数NTT
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...
随机推荐
- 基于mysql和Java Swing的简单课程设计
摘要 现代化的酒店组织庞大.服务项目多.信息量大.要想提高效率.降低成本.提高服务质量和管理水平,进而促进经济效益,必须利用电脑网络技术处理宾馆酒店经营数据,实现酒店现代化的信息管理.本次课程设计运用 ...
- 工具库用久了,你还会原生操作 Cookie 吗?
用得好了,工具库和框架确实是一大助力,但就怕我们会因此习惯了走捷径,而忘了自己的根本依靠是什么. 前言 前端技术的飞速发展,给从业人员不可避免地带来了"疲劳"感,我们常常会感叹学不 ...
- reids rdb与aof
rdb:时合高并发场景,容易备份恢复,会丢失部分数据 1.默认开启的方式,可以进过压缩,可以根据时间点生成快照 2.数据量大的情况下恢复快 3.bgsave一边开启fork保存文件,一边继续响应客户端 ...
- 去除所有js,html,css代码
<?php$search = array ("'<script[^>]*?>.*?</script>'si", // 去掉 javascript ...
- 每天迁移MySQL历史数据到历史库Python脚本
#!/usr/bin/env python # coding:utf-8 #__author__ = 'Logan' import MySQLdb import sys import dat ...
- Vue 组件通信方案
父组件--> 子组件 1. 属性设置 父组件关键代码如下: <template> <Child :child-msg="msg"></Child ...
- 前端~定位属性position(relative、absolute、fixed)的分析
前端~定位属性position(relative.absolute.fixed)的分析 1,简单了解: relative:移动自身时,参考自身的原来位置而移动,移动子元素(子元素设置了absolute ...
- linux7(centos7)新系统安装后要做的事!
前言: 初学者在安装linux(centos)系统后,需要对服务器的环境做些简单配置! 怎么联网? 怎么对SSH优化设置? 怎么在众多服务器中识别谁是谁? 常用的小工具推荐等等... ###网络优化设 ...
- 🏆【Alibaba工具型技术系列】「EasyExcel技术专题」摒除OOM!让你的Excel操作变得更加优雅和安全
前提概要 针对于后端开发者而言的,作为报表的导入和导出是一个很基础且有很棘手的问题!之前常用的工具和方案大概有这么几种: JXL(Java Excel API 工具服务),此种只支持xls的文件格式, ...
- java基础之反射类型Type
Java在加入泛型之后,仅仅Class已经不足以描述数据的类型了,比如List<String>类型的数据,其Class的类型为List.class,但是其类型包含了泛型参数,所以java引 ...