CVPR2019目标检测论文看点:并域上的广义交

Generalized Intersection over Union

Generalized Intersection over Union: A Metric and A Loss for BoundingBox Regression

并域上的广义交Intersection over Union(IOU)是目标检测标准最流行的评估手段。可是,使用boundingbox回归参数方法计算距离误差和最大化度量值优化之间有一个缺陷gap。度量优化目标是度量本身,在2D bounding boxes轴对齐情况下,IOU可直接用作回归loss。但是,IOU有一个困难,在没有重叠的bounding boxes情况下不容易优化。本文,通过使用一种新的loss和新的度量metric版本来消除这个缺陷。使用融合这种推广的IOU(GIOU)作为loss导入目标检测框架的手段,使得检测性能得到持续的改进,使用两种方法,standard-IOU和新的IOU,也就是诸如PASCAL VOC和MS COCO这种基于通用的的目标检测信性能优化算法。

先看看论文的实验示例演示效果。

下面来介绍具体的算法原理

1. Motivation

包围框回归是2D/3D 视觉任务中一个最基础的模块,不管是目标检测,目标跟踪,还是实例分割,都依赖于对bounding box进行回归,以获得准确的定位效果。目前基于深度学习的方法想获得更好的检测性能,要么是用更好的backbone,要么是设计更好的策略提取更好的feature,然而却忽视了bounding box regression中L1、L2 loss这个可以提升的点。

IoU是目标检测中一个重要的概念,在anchor-based的方法中,他的作用不仅用来确定正样本和负样本,还可以用来评价输出框(predict box)和ground-truth的距离,或者说predict box的准确性。IoU有一个好的特性就是对尺度不敏感(scale invariant)。

在regression任务中,判断predict box和gt的距离最直接的指标就是IoU,但所采用的loss却不适合,如图所示,在loss相同的情况下,regression的效果却大不相同,也就是说loss没有体现出regression的效果,而IoU却可以根据不同的情况得到不同的数值,能最直接反应回归效果。

2.Method

因此本文提出用IoU这个直接的指标来指导回归任务的学习。与其用一个代理的损失函数来监督学习,不如直接用指标本身来的好。此时损失函数为:

但直接用IoU作为损失函数会出现两个问题:

  • 如果两个框没有相交,根据定义,IoU=0,不能反映两者的距离大小(重合度)。同时因为loss=0,没有梯度回传,无法进行学习训练。
  • IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。

针对IoU上述两个缺点,本文提出一个新的指标generalized IoU(GIoU):

GIoU的定义很简单,就是先计算两个框的最小闭包区域面积,再计算IoU,再计算闭包区域中不属于两个框的区域占闭包区域的比重,最后用IoU减去这个比重得到GIoU。GIoU有如下4个特点:

与IoU相似,GIoU也是一种距离度量,作为损失函数的话, ,满足损失函数的基本要求

  • GIoU对scale不敏感
  • GIoU是IoU的下界,在两个框无线重合的情况下,IoU=GIoU
  • IoU取值[0,1],但GIoU有对称区间,取值范围[-1,1]。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1,因此GIoU是一个非常好的距离度量指标。
  • 与IoU只关注重叠区域不同,GIoU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度。

其实GIoU不仅定义简单,在2D目标检测中计算方式也很简单,计算重合区域和IoU一样,计算最小闭包区域只需要得到两者max和min坐标,坐标围城的矩形就是最小闭包区域。

GIoU和IoU作为loss的算法如下所示:

步骤:

  • 分别计算gt和predict box的面积
  • 计算intersection的面积
  • 计算最小闭包区域面积
  • 计算IoU和GIoU
  • 根据公式得到loss

3. Experiments

GIoU loss可以替换掉大多数目标检测算法中bounding box regression,本文选取了Faster R-CNN、Mask R-CNN和YOLO v3 三个方法验证GIoU loss的效果。实验在Pascal VOC和MS COCO数据集上进行。

实验效果如下:

可以看出YOLOv3在COCO上有明显涨点,但在其他模型下涨点并不明显,作者也指出了faster rcnn和mask rcnn效果不明显的原因是anchor很密,GIoU发挥作用的情况并不多。

总体来说,文章的motivation比较好,指出用L1、L2作为regression损失函数的缺点,以及用直接指标IoU作为损失函数的缺陷性,提出新的metric来代替L1、L2损失函数,从而提升regression效果,想法简单粗暴,但work的场景有很大局限性。

CVPR2019目标检测论文看点:并域上的广义交的更多相关文章

  1. CVPR2019:无人驾驶3D目标检测论文点评

    CVPR2019:无人驾驶3D目标检测论文点评 重读CVPR2019的文章,现在对以下文章进行点评. Stereo R-CNN based 3D Object Detection for Autono ...

  2. CVPR2019目标检测方法进展综述

    CVPR2019目标检测方法进展综述 置顶 2019年03月20日 14:14:04 SIGAI_csdn 阅读数 5869更多 分类专栏: 机器学习 人工智能 AI SIGAI   版权声明:本文为 ...

  3. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  4. 三维目标检测论文阅读:Deep Continuous Fusion for Multi-Sensor 3D Object Detection

    题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧 ...

  5. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  6. CenterNet算法笔记(目标检测论文)

    论文名称:CenterNet: Keypoint Triplets for Object Detectiontection 论文链接:https://arxiv.org/abs/1904.08189 ...

  7. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  8. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  9. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

随机推荐

  1. 病毒木马查杀实战第014篇:U盘病毒之手动查杀

    在U盘中发现病毒 前段时间需要往虚拟机中拷贝点资料,如同往常一样,插上我的U盘,并且在虚拟机的设置中选择连接U盘.奇怪的是这次的连接时间较以往长,并且还出现了"自动播放"窗口: 图 ...

  2. POJ2536 二分图匹配

    题意:      有n只老鼠,m个洞,每个洞最多可以藏一只老鼠,每个老鼠的移动速度都是v,给你他们的当前坐标,和洞的坐标,突然老鹰来了,他们必须在s秒内跑到一个洞藏起来,问你最少有多少只老鼠被抓走了. ...

  3. hdu1568斐波那契前4位

    题意:      就是求斐波那契数,但是只要求输出前四位,(n<=100000000). 思路:      这个要用到斐波那契的公式和一些log的规律,直接打看着很乱,直接在网上偷张图片吧:   ...

  4. C#-DUP

    void jianting() { int port = 8888; UdpClient udpclient = new UdpClient(port); IPEndPoint ipendpoint ...

  5. Python爬虫之requests库的使用

    requests库 虽然Python的标准库中 urllib模块已经包含了平常我们使用的大多数功能,但是它的 API 使用起来让人感觉不太好,而 Requests宣传是 "HTTP for ...

  6. Bugku-flag.php

    flag.php 目录 flag.php 题目描述 解题过程 题目描述 点了login咋没反应 提示:hint 解题过程 fuzz 打开发现是个登录页面,点击login没反应,看了源码,action= ...

  7. Andrew Ng机器学习算法入门(八):正规方程

    正规方程 在先学习正规方程之前,先来复习一下之前学过的常规的回归方程的解法. 假设存在如果的代价函数, ,解法也十分的简答. 但是有时候遇到的情况或许会变得相当的复杂. 的数,如果是按照常规的方式进行 ...

  8. FileInfo & DirectoryInfo

    这节讲两个实例类,FileInfo和DirectoryInfo两个类,用于操作某个具体的文件或者目录. FileInfo:     FileInfo不同于File,它是一个实例类,有一个string类 ...

  9. Git 系列教程(9)- 打标签

    打标签 一般会给提交历史打个标签,方便后续进行筛选.查看 列出标签 可带上可选的 -l 选项 --list $ git tag v1.0 v2.0 这个命令以字母顺序列出标签 可以按照特定的模式查找标 ...

  10. OO第一单元总结——表达式求导

    第一次作业 (1) UML结构图 (2)结构分析 Polynomial 类是对输入的字符串进行预处理,其中包括判断格式是否合法,运算符简化,分割成项等方法. Polynomial处理后得到的每一个项的 ...