TensorFlow实现多层感知机函数逼近
TensorFlow实现多层感知机函数逼近
准备工作
对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。
下面是如何使用 MLP 进行函数逼近的示例:
- 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集;pandas,可以用来分析数据集;matplotlib 和 seaborn 可以用来可视化:

- 加载数据集并创建 Pandas 数据帧来分析数据:

- 了解一些关于数据的细节:

下表很好地描述了数据:

- 找到输入的不同特征与输出之间的关联:

以下是上述代码的输出:

- 从前面的代码中,可以看到三个参数
RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用
MinMaxScaler 来规范数据集。
需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:

- 定义常量和超参数:

- 创建一个单隐藏层的多层感知机模型:

- 声明训练数据的占位符并定义损失和优化器:

- 执行计算图:

解读分析
在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:

在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。
下面是 Keras 中以 TensorFlow 作为后端的代码:

前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:

TensorFlow实现多层感知机函数逼近的更多相关文章
- TensorFlow多层感知机函数逼近过程详解
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearni ...
- TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- TensorFlow实现自编码器及多层感知机
1 自动编码机简介 传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- Theano3.4-练习之多层感知机
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classi ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
随机推荐
- 基于IMU与磁力计的手势提取手套-原理及其实现
手势提取依据所采用传感器的不同,可以分为基于视觉,基于惯性传感器,基于FSR,基于EMG传感器的方法.其中基于视觉的方法使用场景有限,且无法获取精确的手指关节角度:基于FSR的方法难以布置传感器且难以 ...
- Average Score39届亚洲赛牡丹江站A题
题意: A班有n个人,B班有m个人,然后现在给你n-1个A班人的成绩,和m个B班人的成绩,然后题目要求求出A班剩下的没给成绩那个人的成绩范围,要求是这个人从A班转到B班后能使A,B的平均分 ...
- Win64 驱动内核编程-19.HOOK-SSDT
HOOK SSDT 在 WIN64 上 HOOK SSDT 和 UNHOOK SSDT 在原理上跟 WIN32 没什么不同,甚至说 HOOK 和 UNHOOK 在本质上也没有不同,都是在指定的地址上填 ...
- (8)MySQL进阶篇SQL优化(InnoDB锁-共享锁、排他锁与意向锁)
1.锁的分类 锁(Locking)是数据库在并发访问时保证数据一致性和完整性的主要机制.之前MyISAM锁章节已经讲过锁分类,而InnoDB锁按照粒度分为锁定整个表的表级锁(table-level l ...
- 【vue-04】模块化开发
组件化开发,一般是将重复的代码抽取成一个组件,供其他地方复用,一般情况下,提到组件化开发,都是指前端的组件化开发. 模块化开发,一般是将同一类功能模块的代码放到一起统一进行管理,是基于代码层面的,一般 ...
- webpack 快速入门 系列 —— 初步认识 webpack
初步认识 webpack webpack 是一种构建工具 webpack 是构建工具中的一种. 所谓构建,就是将资源转成浏览器可以识别的.比如我们用 less.es6 写代码,浏览器不能识别 less ...
- 痞子衡嵌入式:恩智浦i.MX RTxxx系列MCU启动那些事(6.B)- FlexSPI NOR连接方式大全(RT500)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT500的FlexSPI NOR启动的连接方式. 这个i.MXRT FlexSPI NOR启动连接方式系列文章,痞子衡 ...
- python工业互联网应用实战14——单元测试覆盖率
前面的章节我们完成了任务管理主要功能的开发及单元测试编写,可如何知道单元测试效果怎么样呢?测试充分吗?还有没有没有测到的地方呢? 本章节我们介绍一个统计测试代码覆盖率的利器Coverage,Cover ...
- 容器进阶:OCI与容器运行时
Blog:博客园 个人 什么是容器运行时(Container Runtime) Kubernetes节点的底层由一个叫做容器运行时的软件进行支撑,它负责比如启停容器 这样的事情.最广为人知的容器运行时 ...
- 手把手教你看MySQL官方文档
前言: 在学习和使用MySQL的过程中,难免会遇到各种问题.不知道当你遇到相关问题时会怎么做,我在工作或写文章的过程中,遇到不懂或需要求证的问题时通常会去查阅官方文档.慢慢的,阅读文档也有了一些经验, ...