TensorFlow实现多层感知机函数逼近
TensorFlow实现多层感知机函数逼近
准备工作
对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。
下面是如何使用 MLP 进行函数逼近的示例:
- 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集;pandas,可以用来分析数据集;matplotlib 和 seaborn 可以用来可视化:
- 加载数据集并创建 Pandas 数据帧来分析数据:
- 了解一些关于数据的细节:
下表很好地描述了数据:
- 找到输入的不同特征与输出之间的关联:
以下是上述代码的输出:
- 从前面的代码中,可以看到三个参数
RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用
MinMaxScaler 来规范数据集。
需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:
- 定义常量和超参数:
- 创建一个单隐藏层的多层感知机模型:
- 声明训练数据的占位符并定义损失和优化器:
- 执行计算图:
解读分析
在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:
在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。
下面是 Keras 中以 TensorFlow 作为后端的代码:
前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:
TensorFlow实现多层感知机函数逼近的更多相关文章
- TensorFlow多层感知机函数逼近过程详解
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearni ...
- TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- TensorFlow实现自编码器及多层感知机
1 自动编码机简介 传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- Theano3.4-练习之多层感知机
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classi ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
随机推荐
- BLDC有感FOC算法理论及其STM32软硬件实现
位置传感器:旋转编码器 MCU:STM32F405RGT6 功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FO ...
- 转载:微信小程序view布局
https://www.cnblogs.com/sun8134/p/6395947.html
- 【网络协议】OSI七层模型 和TCP/IP五层模型
OSI(Open System Interconnection)七层模型 TCP/IP 五层模型
- Android内核模块编译执行
Author: GeneBlue 0X01 前言 内核驱动是漏洞的高发区,了解Android驱动代码的编写是分析.利用驱动漏洞的基础.本文以一个"hello"驱动为例,简单介绍内核 ...
- 基于dalvik模式下的Xposed Hook开发的某加固脱壳工具
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/77966109 这段时间好好的学习了一下Android加固相关的知识和流程也大致把A ...
- windows-CODE注入(远程线程注入)
远程线程注入(先简单说,下面会详细说)今天整理下代码注入(远程线程注入),所谓代码注入,可以简单的理解为是在指定内进程里申请一块内存,然后把我们自己的执行代码和一些变量拷贝进去(通常是以启线程的方式) ...
- 续订Jetbrain学生包
今天打开IDEA和Pycharm都不约而同的告诉我我的账号无法使用学生包了 此刻我的内心是: 冷静下来我算了算,嗷,原来是一年的订阅期到了,那就简单了,直接续订吧,唉.其实续订和重新认证是一样的. 首 ...
- Day008 数组的使用
数组的使用 For-Each循环 数组作方法入参 数组作返回值 用普通for循环遍历 int[] arrays={1,2,3,4,5}; //打印全部的数组元素 for (int i = 0; i & ...
- Win10安装Ubuntu子系统(WSL)
一:设置子系统环境 关闭所有运行的程序,打开 控制面板→卸载程序→启用或关闭windows功能→勾选上适用于Linux的windows子系统 ,然后确定,完成会提示重启电脑,确定重启,等重启电脑后在操 ...
- ConcurrentHashMap源码解读二
接下来就讲解put里面的三个方法,分别是 1.数组初始化方法initTable() 2.线程协助扩容方法helpTransfer() 3.计数方法addCount() 首先是数组初始化,再将源码之前, ...