Interesting Fibonacci

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1071    Accepted Submission(s): 229

Problem Description
In
mathematics, the Fibonacci numbers are a sequence of numbers named
after Leonardo of Pisa, known as Fibonacci (a contraction of filius
Bonaccio, "son of Bonaccio"). Fibonacci's 1202 book Liber Abaci
introduced the sequence to Western European mathematics, although the
sequence had been previously described in Indian mathematics.
  The
first number of the sequence is 0, the second number is 1, and each
subsequent number is equal to the sum of the previous two numbers of the
sequence itself, yielding the sequence 0, 1, 1, 2, 3, 5, 8, etc. In
mathematical terms, it is defined by the following recurrence relation:

That
is, after two starting values, each number is the sum of the two
preceding numbers. The first Fibonacci numbers (sequence A000045 in
OEIS), also denoted as F[n];
F[n] can be calculate exactly by the following two expressions:


A
Fibonacci spiral created by drawing arcs connecting the opposite
corners of squares in the Fibonacci tiling; this one uses squares of
sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34;

So you can see how interesting the Fibonacci number is.
Now AekdyCoin denote a function G(n)

Now your task is quite easy, just help AekdyCoin to calculate the value of G (n) mod C
 
Input
The
input consists of T test cases. The number of test cases (T is given in
the first line of the input. Each test case begins with a line
containing A, B, N, C (10<=A, B<2^64, 2<=N<2^64,
1<=C<=300)
 
Output
For
each test case, print a line containing the test case number( beginning
with 1) followed by a integer which is the value of G(N) mod C
 
Sample Input
1
17 18446744073709551615 1998 139
 
Sample Output
Case 1: 120
 
Author
AekdyCoin
 思路:欧拉函数;
G(n)= F(a^b)^((F(a^b))^(N-1));然后,找一下数列的循环节,然后应为a^b>300,所以直接用欧拉降幂,((F(a^b)^(N-1))%oula[C] + oula[C]);因为F(a^b)^(N-1) > oula[C];
这样幂数就就降下来了。
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<stdlib.h>
4 #include<queue>
5 #include<iostream>
6 #include<string.h>
7 #include<math.h>
8 using namespace std;
9 typedef unsigned long long LL;
10 bool prime[400];
11 int ans[400];
12 int oula[400];
13 int ff[30];
14 typedef struct node
15 {
16 LL m[2][2];
17 node()
18 {
19 memset(m,0,sizeof(m));
20 }
21 } maxtr;
22 int f[10000];
23 int fin(LL n);
24 LL quick(LL n,LL m,LL mod);
25 int main(void)
26 {
27 memset(prime,0,sizeof(prime));
28 int i,j;
29 for(i = 0; i <= 300; i++)
30 {
31 oula[i] = i;
32 }
33 int cn = 0;
34 for(i = 2; i <= 300; i++)
35 {
36 if(!prime[i])
37 {
38 ans[cn++] = i;
39 for(j = i; (i*j) <= 300; j++)
40 {
41 prime[i*j] = true;
42 }
43 }
44 }//printf("%d\n",cn);
45 for(i = 0; i < cn; i++)
46 {
47 for(j = 1; ans[i]*j <= 300; j++)
48 {
49 oula[ans[i]*j]/=ans[i];
50 oula[ans[i]*j]*=(ans[i] - 1);
51 }
52 }
53 ff[0] = 0;
54 ff[1] = 1;
55 for(i = 2; i <= 20; i++)
56 {
57 ff[i] = ff[i-1]+ff[i-2];
58 }
59 //printf("%d\n",ff[20]);
60 LL A,B,N,C;
61 int T;
62 scanf("%d",&T);
63 int __ca = 0;
64 while(T--)
65 {
66 scanf("%llu %llu %llu %llu",&A,&B,&N,&C);
67 {
68 printf("Case %d: ",++__ca);
69 if(C == 1)
70 printf("0\n");
71 else
72 {
73 int k = fin(C);
74 LL ask = quick(A,B,(LL)k);
75 LL c = (LL)f[ask];
76 if(c == 0)
77 printf("0\n");
78 else
79 {
80 LL v = A;
81 LL x = B;
82 int flag = 0;
83 {
84 int u = fin((LL)oula[C]);
85 LL avk = quick(A,B,(LL)u);
86 LL app = (LL)f[avk];
87 LL ni = quick(app,N-1,(LL)oula[C]);
88 ni = ni + (LL)oula[C];
89 printf("%llu\n",quick(c,ni,C));
90 }
91 }
92 }
93 }
94 }
95 return 0;
96 }
97 int fin(LL n)
98 {
99 f[0] = 0;
100 f[1] = 1;
101 int id;
102 int i;
103 for(i = 2; i < 5000; i++)
104 {
105 f[i] = f[i-1]+f[i-2];
106 f[i]%=n;
107 if(f[i] == f[1]&&f[0] == f[i-1])
108 {
109 id = i-2;
110 break;
111 }
112 }//printf("%d\n",id);
113 return id+1;
114 }
115 LL quick(LL n,LL m,LL mod)
116 {
117 LL ak = 1;
118 n%=mod;
119 while(m)
120 {
121 if(m&1)
122 {
123 ak = ak*n%mod;
124 }
125 n = n*n%mod;
126 m/=2;
127 }
128 return ak;
129 }

Interesting Fibonacci(hdu 2814)的更多相关文章

  1. hdu 2814 Interesting Fibonacci

    pid=2814">点击此处就可以传送 hdu 2814 题目大意:就是给你两个函数,一个是F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1; 还有 ...

  2. hdu Interesting Fibonacci

    Interesting Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. HDU 2814 斐波那契循环节 欧拉降幂

    一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节.数据范围出的很那啥..unsigned long long注意用防爆的乘法 /** @Date : 2017-09- ...

  4. BestCoder10 1001 Revenge of Fibonacci(hdu 5018) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5018 题目意思:给出在 new Fibonacci 中最先的两个数 A 和 B(也就是f[1] = A ...

  5. (字典树)Revenge of Fibonacci -- HDU -- 4099

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4099 要用c++交哦, G++ MLE 不是很懂,先粘上慢慢学习 代码: #include<std ...

  6. Hat's Fibonacci hdu 1250

    Problem Description A Fibonacci sequence is calculated by adding the previous two members the sequen ...

  7. hdu 2814 快速求欧拉函数

    /** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...

  8. HDU - 2814 Visible Trees

    题意: m*n(1<=m,n<=100000)的森林里,起始点在(1,1),某人从(0,0)点开始看,问能看到多少棵树. 题解: 求出1~x中的每个数与1~y的数中互质的数的总和.用素数筛 ...

  9. 【转载】ACM总结——dp专辑

    感谢博主——      http://blog.csdn.net/cc_again?viewmode=list       ----------  Accagain  2014年5月15日 动态规划一 ...

随机推荐

  1. 11-String to Integer (atoi)

    字符串转整型,更新之后的leetcode题,需考虑各种情况, 测试过标准库的atoi函数,当字符串越界返回的值是错的, 而该题要求越界时的返回边界值,更加严谨. Implement atoi to c ...

  2. 搭建FastDFS集群

    先插一张图(学习的时候找的)http://blog.csdn.net/u012453843/article/details/68957209?> 软件下载地址:主要是fastdfs.libfas ...

  3. day09搭建均衡负载和搭建BBS博客系统

    day09搭建均衡负载和搭建BBS博客系统 搭建BBS博客系统 本次搭建bbs用到的技术 需要用到的: 1.Nginx+Django 2.Django+MySQL 环境准备 主机 IP 身份 db01 ...

  4. SqlSession与SqlSessionFactory到底是什么关系?

    1. SqlSession和SqlSessionFactory的接口定义 SqlSession: public interface SqlSession extends Closeable {     ...

  5. Oracle中分割逗号函数REGEXP_SUBSTR

    最近优化FORM中的查询条件遇到某个字段可以选取多个值的问题,思路当然就是选取时将多个值通过某个符号拼接起来,查询数据的时候将拼接后的字符串按照符号分割开,在分割逗号的时候用到了一个新的方法REGEX ...

  6. Linux基础命令---mysql

    mysql mysql是一个简单的sql shell,它可以用来管理mysql数据库. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法      m ...

  7. mybatis-插件开发

    在Executor.StatementHandler.parameterHandler.resultSetHandler创建的时候都有一步这样的操作xxxHandler=interceptorChai ...

  8. Vue.js 学习

    一,Vue.js 介绍 Vue 是一套用于构建用户界面的渐进式javascript框架,与其它大型框架不同的是:Vue被设计为可以自底向上逐层应用.Vue的核心库只关注视图层,不仅易于上手,还便于与第 ...

  9. springboot-devtools实现项目的自动重启

    热部署的引入依赖: <!-- 热部署 --> <dependency> <groupId>org.springframework.boot</groupId& ...

  10. 使用Lock接口来解决线程安全的问题

    package cn.itcast.demo16.Demo09.Lock;import java.util.concurrent.locks.Lock;import java.util.concurr ...