目录

RKHS-wiki

这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了.

主要内容

首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质.

Hilbert空间\(\mathcal{H}\), 其中的每个元素\(f: \mathcal{X} \rightarrow \mathbb{K}\), 并由内积\(\langle \cdot, \cdot, \rangle_{\mathcal{H}}\)建立联系. 我们考虑如下的线性算子:

\[\delta_x(f) = f(x).
\]

进一步假设\(\delta_x\)是有界线性算子, 则根据Riesz表示定理可知, 存在唯一的\(\phi_x \in \mathcal{H}\),

\[f(x) = \delta_x(f) = \langle f, \phi_x \rangle_{\mathcal{H}},
\]

此时

\[\delta_x (\phi_y) = \langle \phi_y, \phi_x \rangle_{\mathcal{H}}.
\]

RKHS指的就是每一个\(\delta_x, \forall x \in \mathcal{X}\)均为有界线性算子, 换言之,

\[|f(x) - g(x)| = |\delta_x(f) - \delta_x (g)| \le M_x \|f - g\|_{\mathcal{H}}, \quad \forall x \in \mathcal{X}.
\]

一般的, RKHS总会和某些特定的kernel \(K\)联系在一起, 实际上, 对于上述情况:

\[K(x, y) := \langle \phi_x, \phi_y \rangle.
\]

在什么情况下可以通过\(K\)确定一个Hilbert 空间?

Moore-Aronszajn 定理: 当\(K\)对称正定, 则存在唯一的Hilbert空间, 其reproducing kernel是\(K\).

proof:

首先通过K构造线性空间\(\mathrm{span}(\{K(\cdot, x): x \in \mathcal{X}\})\), 再赋予内积

\[\langle K_x, K_y \rangle_{\mathcal{H}} = K(x, y).
\]

其中, 内积的可交换性由K的对称性带来, 内积\((x, x)=0\)当且仅当\(x=0\)由正定性带来.

再令上述内积空间的闭包为

\[\mathcal{H},
\]

即包括

\[f = \sum_i a_i K_{x_i}.
\]

显然

\[f(x) = \sum_i a_i K(x, x_i) = \langle f, K_x \rangle_{\mathcal{H}}.
\]

\[|f(x)-g(x)| = |\langle f-g, K_x \rangle_{\mathcal{H}}| \le \|K_x\|_{\mathcal{H}} \|f-g\|_{\mathcal{H}}.
\]

故\(\mathcal{H}\)是RKHS且其reproducing kernel即为\(K\).

倘若还存在别的Hilbert空间\(\mathcal{G}\), 那么显然\(\mathcal{H} \subset \mathcal{G}\), 只需证明反包含即可. 对于任意的\(g \in \mathcal{G}\), 可分解为

\[g = g_{\mathcal{H}} + g_{\mathcal{H}^{\bot}},
\]
\[g(x) = \langle g, K_x \rangle_{\mathcal{G}} = \langle g_{\mathcal{H}}, K_x \rangle_{\mathcal{G}} + \langle g_{\mathcal{H}^{\bot}}, K_x \rangle_{\mathcal{G}} = \langle g_{\mathcal{H}}, K_x \rangle_{\mathcal{H}} = g_{\mathcal{H}}(x).
\]

故\(g\in \mathcal{H}\).

Reproducing Kernel Hilbert Space (RKHS)的更多相关文章

  1. The space of such functions is known as a reproducing kernel Hilbert space.

    Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...

  2. paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。

    在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...

  3. Hilbert space

    Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...

  4. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  5. 希尔伯特空间(Hilbert Space)是什么?

    希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...

  6. 希尔伯特空间(Hilbert Space)

    欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...

  7. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

  8. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  9. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

随机推荐

  1. Shell 统计文件的行数

    目录 统计文件的行数 题目 题解-awk 题解-wc 题解sed 统计文件的行数 题目 写一个 bash脚本以输出一个文本文件 nowcoder.txt中的行数 示例: 假设 nowcoder.txt ...

  2. 云原生时代,为什么基础设施即代码(IaC)是开发者体验的核心?

    作者 | 林俊(万念) 来源 |尔达 Erda 公众号 从一个小故事开始 你是一个高级开发工程师. 某天,你自信地写好了自动煮咖啡功能的代码,并在本地调试通过.代码合并入主干分支后,你准备把服务发布到 ...

  3. flink---实时项目--day02-----1. 解析参数工具类 2. Flink工具类封装 3. 日志采集架构图 4. 测流输出 5. 将kafka中数据写入HDFS 6 KafkaProducer的使用 7 练习

    1. 解析参数工具类(ParameterTool) 该类提供了从不同数据源读取和解析程序参数的简单实用方法,其解析args时,只能支持单只参数. 用来解析main方法传入参数的工具类 public c ...

  4. 【Java 泛型】之 <? super T> 和<? extends T> 中 super ,extends如何理解?有何异同?

    Java 泛型 <? super T> 和<? extendsT>中 super ,extends怎么 理解?有何不同? 简介 前两篇文章介绍了泛型的基本用法.类型擦除以及泛型 ...

  5. awk的基本用法

    最近遇到导入的csv文件首行为日期,但需要将日期作为列导入到数据库中,直接使用ctl文件好像无法实现,了解到awk这个强大的命令. 导入的CSV文件除了首行为日期,其他的都是格式相同的.需要将首行单独 ...

  6. Shell脚本实现乱序排列文件内容的多种方法(洗牌问题)

    洗牌问题:洗一副扑克,有什么好办法?既能洗得均匀,又能洗得快?即相对于一个文件来说怎样高效率的实现乱序排列? ChinaUnix 确实是 Shell 高手云集的地方,只要你想得到的问题,到那里基本上都 ...

  7. 【Spring Framework】Spring入门教程(五)AOP思想和动态代理

    本文主要讲解内容如下: Spring的核心之一 - AOP思想 (1) 代理模式- 动态代理 ① JDK的动态代理 (Java官方) ② CGLIB 第三方代理 AOP概述 什么是AOP(面向切面编程 ...

  8. 【.NET 与树莓派】WS28XX 灯带的颜色渐变动画

    在上一篇水文中,老周演示了 WS28XX 的基本使用.在文末老周说了本篇介绍颜色渐变动画的简单实现. 在正式开始前,说一下题外话. 第一件事,最近树莓派的价格猛涨,相信有关注的朋友都知道了.所以,如果 ...

  9. 转:Sed使用

    awk于1977年出生,今年36岁本命年,sed比awk大2-3岁,awk就像林妹妹,sed就是宝玉哥哥了.所以 林妹妹跳了个Topless,他的哥哥sed坐不住了,也一定要出来抖一抖. sed全名叫 ...

  10. CTF靶场

    CTF靶场测试报告 一.跨站脚本攻击(XSS) 实验原理:跨站脚本攻击( Cross Site Script),本来的缩写应为CSS,但是为了与层叠样式表(Cascading Style CSS)区分 ...