Optimal Symmetric Paths(UVA12295)
Description

You have a grid of n rows and n columns. Each of the unit squares contains a non-zero digit. You walk from the top-left square to the bottom-right square. Each step, you can move left, right, up or down to the adjacent square (you cannot move diagonally), but you cannot visit a square more than once. There is another interesting rule: your path must be symmetric about the line connecting the bottom-left square and top-right square. Below is a symmetric path in a 6 x 6 grid.

Your task is to find out, among all valid paths, how many of them have the minimal sum of digits?
Input
There will be at most 25 test cases. Each test case begins with an integer n ( 2
n
100). Each of the next n lines contains n non-zero digits (i.e. one of 1, 2, 3, ..., 9). These n2 integers are the digits in the grid. The input is terminated by a test case with n = 0, you should not process it.
Output
For each test case, print the number of optimal symmetric paths, modulo 1,000,000,009.
Sample Input
2
1 1
1 1
3
1 1 1
1 1 1
2 1 1
0
Sample Output
2
3
思路:要求是要关于那条线对称的,所一把上半角和下半角叠加起来,然后求到那条线的最短路即可,用迪杰斯特拉求。建图也比较简单,就是每个点向四个方向的点连边
。在求最短路的时候开一个数组记录当前走到该点的最短路有多少条就行,最后求到斜边点上等于最短路的种数和即可。
复杂度n*n
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<math.h>
6 #include<queue>
7 #include<vector>
8 using namespace std;
9 int ma[200][200];
10 typedef struct pp
11 {
12 int x;
13 int y;
14 int cost;
15 int id;
16 bool flag;
17 } ss;
18 const int mod=1e9+9;
19 typedef long long LL;
20 LL sum[10005];
21 LL d[10005];
22 bool flag[10005];
23 ss node[10005];
24 vector<ss>vec[10005];
25 int dd[200][200];
26 void dj(int n,int id);
27 int main(void)
28 {
29 int i,j,k;
30 while(scanf("%d",&k),k!=0)
31 {
32 memset(dd,-1,sizeof(dd));
33 memset(flag,0,sizeof(flag));
34 memset(sum,0,sizeof(sum));
35 for(i=0;i<10005;i++)
36 vec[i].clear();
37 for(i=0; i<k; i++)
38 {
39 for(j=0; j<k; j++)
40 {
41 scanf("%d",&ma[i][j]);
42 }
43 }
44 for(i=0; i<k; i++)
45 {
46 for(j=0; j<(k-i); j++)
47 {
48 if(i+j!=k-1)
49 {
50 ma[i][j]+=ma[k-j-1][k-i-1];
51 }
52 }
53 }
54 int id=0;
55 for(i=0; i<k; i++)
56 {
57 for(j=0; j<(k-i); j++)
58 {
59 if(i+j==k-1)
60 {
61 node[id].flag=true;
62 node[id].x=i;
63 node[id].y=j;
64 node[id].id=id;
65 }
66 else
67 {
68 node[id].flag=false ;
69 node[id].x=i;
70 node[id].y=j;
71 node[id].id=id;
72 }
73 dd[i][j]=id;
74 if(i-1>=0)
75 {
76 ss cc;
77 cc.x=i-1;
78 cc.y=j;
79 cc.id=dd[i-1][j];
80 cc.cost=ma[i-1][j];
81 vec[id].push_back(cc);
82 cc.x=i;
83 cc.y=j;
84 cc.id=dd[i][j];
85 cc.cost=ma[i][j];
86 vec[dd[i-1][j]].push_back(cc);
87 }
88 if(j-1>=0)
89 {
90 ss cc;
91 cc.x=i;
92 cc.y=j-1;
93 cc.id=dd[i][j-1];
94 cc.cost=ma[i][j-1];
95 vec[id].push_back(cc);
96 cc.x=i;
97 cc.y=j;
98 cc.id=dd[i][j];
99 cc.cost=ma[i][j];
100 vec[dd[i][j-1]].push_back(cc);
101 }
102 if(i+1<k&&dd[i+1][j]!=-1)
103 {
104 ss cc;
105 cc.x=i+1;
106 cc.y=j;
107 cc.id=dd[i+1][j];
108 cc.cost=ma[i+1][j];
109 vec[id].push_back(cc);
110 cc.x=i;
111 cc.y=j;
112 cc.id=dd[i][j];
113 cc.cost=ma[i][j];
114 vec[dd[i+1][j]].push_back(cc);
115 }
116 if(j+1<k&&dd[i][j+1]!=-1)
117 {
118 ss cc;
119 cc.x=i;
120 cc.y=j+1;
121 cc.id=dd[i][j+1];
122 cc.cost=ma[i][j+1];
123 vec[id].push_back(cc);
124 cc.x=i;
125 cc.y=j;
126 cc.id=dd[i][j];
127 cc.cost=ma[i][j];
128 vec[dd[i][j+1]].push_back(cc);
129 }
130 id++;
131 }
132 }
133 dj(0,id);
134 LL maxx=1e18;
135 for(i=0; i<id; i++)
136 {
137 if(node[i].flag)
138 {
139 if(maxx>d[i])
140 {
141 maxx=d[i];
142 }
143 }
144 }
145 LL akk=0;
146 for(i=0; i<id; i++)
147 {
148 if(maxx==d[i]&&node[i].flag)
149 {
150 akk=akk+sum[i];
151 akk%=mod;
152 }
153 }
154 printf("%lld\n",akk);
155 }
156 return 0;
157 }
158 void dj(int n,int id)
159 {
160 int i,j,k;
161 fill(d,d+10005,1e9);
162 d[n]=ma[0][0];
163 memset(flag,0,sizeof(flag));
164 while(true)
165 {
166 int l=-1;
167 for(i=0; i<id; i++)
168 {
169 if((l==-1||d[i]<d[l])&&flag[i]==false)
170 {
171 l=i;
172 }
173 }
174 if(l==-1)
175 {
176 return ;
177 }
178 flag[l]=true;
179 ss ask=node[l];
180 int x=ask.x;
181 int y=ask.y;
182 int ac=ask.id;
183 if(l==0)
184 {
185 sum[l]=1;
186 }
187 else
188 {
189
190 for(i=0; i<vec[ac].size(); i++)
191 {
192 ss pp=vec[ac][i];
193 if(d[pp.id]+(LL)ma[x][y]==d[l])
194 sum[l]=sum[pp.id]+sum[l];
195 sum[l]%=mod;
196 }
197 }
198 for(i=0; i<vec[ac].size(); i++)
199 {
200 ss pp=vec[ac][i];
201 if(d[pp.id]>d[l]+pp.cost)
202 d[pp.id]=d[l]+pp.cost;
203 }
204 }
205 }
Optimal Symmetric Paths(UVA12295)的更多相关文章
- FAQ: Automatic Statistics Collection (文档 ID 1233203.1)
In this Document Purpose Questions and Answers What kind of statistics do the Automated tasks ...
- Contest2073 - 湖南多校对抗赛(2015.04.06)
Contest2073 - 湖南多校对抗赛(2015.04.06) Problem A: (More) Multiplication Time Limit: 1 Sec Memory Limit: ...
- Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ2112 Optimal Milking
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17811 Accepted: 6368 ...
- Optimal Milking POJ - 2112 (多重最优匹配+最小费用最大流+最大值最小化 + Floyd)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19347 Accepted: 690 ...
- POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 20262 Accepted: 7230 ...
随机推荐
- 单片机ISP、IAP和ICP几种烧录方式的区别
单片机ISP.IAP和ICP几种烧录方式的区别 玩单片机的都应该听说过这几个词.一直搞不太清楚他们之间的区别.今天查了资料后总结整理如下. ISP:In System Programing,在系统编程 ...
- ansible-playbook 编译安装nginx
mkdir /etc/ansible/roles/nginx/{files,templates,tasks,handlers,vars,default,meta} -pv └── nginx ├── ...
- 【系统硬件】英伟达安培卡 vs 老推理卡硬件参数对比
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范 O_o >_< o_O O_o ~_~ o_O 本文分享一下英伟达安培卡 vs 老推理 ...
- DBeaver客户端工具连接Hive
目录 介绍 下载安装 相关配置 1.填写主机名 2.配置驱动 简单使用 主题设置 字体背景色 介绍 在hive命令行beeline中写一些很长的查询语句不是很方便,急需一个hive的客户端界面工具 D ...
- C++一元多项式求导
这个题难度不大但是坑有点多,要考虑的点有几个: 1.测试用例为x 0 这个直接输出 0 0即可. 2.注意空格的输出 3.测试点3我好几次都没过,最后参考了别的答案加以修改才通过. 测试点3没过的代码 ...
- Oracle中创建DB LINK
当用户要跨本地数据库,访问另外一个数据库表中的数据时,本地数据库中必须创建了远程数据库的dblink,通过dblink本地数据库可以像访问本地数据库一样访问远程数据库表中的数据.下面讲介绍如何在本地数 ...
- display:inline-block,block,inline元素的区别
1.display:block将元素显示为块级元素,从而可以更好地操控元素的宽高,以及内外边距,每一个块级元素都是从新的一行开始.2.display : inline将元素显示为行内元素,高度,行高以 ...
- springboot+vue集成mavon-editor,开发在线文档知识库
先睹为快,来看下效果: 技术选型 SpringBoot.Spring Security.Oauth2.Vue-element-admin 集成mavon-editor编辑器 安装 mavon-edit ...
- Mybatis中 SIMPLE、REUSE、BATCH的区别
Executor分成两大类,一类是CacheExecutor,另一类是普通Executor. 普通类又分为: ExecutorType.SIMPLE: 这个执行器类型不做特殊的事情.它为每个语句的执行 ...
- Linkerd Service Mesh 授权策略(Server & ServerAuthorization)
简介 Server 和 ServerAuthorization 是 Linkerd 中的两种策略资源, 用于控制对 mesh 应用程序的入站访问. 在 linkerd 安装期间,policyContr ...