Optimal Symmetric Paths(UVA12295)
Description

You have a grid of n rows and n columns. Each of the unit squares contains a non-zero digit. You walk from the top-left square to the bottom-right square. Each step, you can move left, right, up or down to the adjacent square (you cannot move diagonally), but you cannot visit a square more than once. There is another interesting rule: your path must be symmetric about the line connecting the bottom-left square and top-right square. Below is a symmetric path in a 6 x 6 grid.

Your task is to find out, among all valid paths, how many of them have the minimal sum of digits?
Input
There will be at most 25 test cases. Each test case begins with an integer n ( 2
n
100). Each of the next n lines contains n non-zero digits (i.e. one of 1, 2, 3, ..., 9). These n2 integers are the digits in the grid. The input is terminated by a test case with n = 0, you should not process it.
Output
For each test case, print the number of optimal symmetric paths, modulo 1,000,000,009.
Sample Input
2
1 1
1 1
3
1 1 1
1 1 1
2 1 1
0
Sample Output
2
3
思路:要求是要关于那条线对称的,所一把上半角和下半角叠加起来,然后求到那条线的最短路即可,用迪杰斯特拉求。建图也比较简单,就是每个点向四个方向的点连边
。在求最短路的时候开一个数组记录当前走到该点的最短路有多少条就行,最后求到斜边点上等于最短路的种数和即可。
复杂度n*n
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<math.h>
6 #include<queue>
7 #include<vector>
8 using namespace std;
9 int ma[200][200];
10 typedef struct pp
11 {
12 int x;
13 int y;
14 int cost;
15 int id;
16 bool flag;
17 } ss;
18 const int mod=1e9+9;
19 typedef long long LL;
20 LL sum[10005];
21 LL d[10005];
22 bool flag[10005];
23 ss node[10005];
24 vector<ss>vec[10005];
25 int dd[200][200];
26 void dj(int n,int id);
27 int main(void)
28 {
29 int i,j,k;
30 while(scanf("%d",&k),k!=0)
31 {
32 memset(dd,-1,sizeof(dd));
33 memset(flag,0,sizeof(flag));
34 memset(sum,0,sizeof(sum));
35 for(i=0;i<10005;i++)
36 vec[i].clear();
37 for(i=0; i<k; i++)
38 {
39 for(j=0; j<k; j++)
40 {
41 scanf("%d",&ma[i][j]);
42 }
43 }
44 for(i=0; i<k; i++)
45 {
46 for(j=0; j<(k-i); j++)
47 {
48 if(i+j!=k-1)
49 {
50 ma[i][j]+=ma[k-j-1][k-i-1];
51 }
52 }
53 }
54 int id=0;
55 for(i=0; i<k; i++)
56 {
57 for(j=0; j<(k-i); j++)
58 {
59 if(i+j==k-1)
60 {
61 node[id].flag=true;
62 node[id].x=i;
63 node[id].y=j;
64 node[id].id=id;
65 }
66 else
67 {
68 node[id].flag=false ;
69 node[id].x=i;
70 node[id].y=j;
71 node[id].id=id;
72 }
73 dd[i][j]=id;
74 if(i-1>=0)
75 {
76 ss cc;
77 cc.x=i-1;
78 cc.y=j;
79 cc.id=dd[i-1][j];
80 cc.cost=ma[i-1][j];
81 vec[id].push_back(cc);
82 cc.x=i;
83 cc.y=j;
84 cc.id=dd[i][j];
85 cc.cost=ma[i][j];
86 vec[dd[i-1][j]].push_back(cc);
87 }
88 if(j-1>=0)
89 {
90 ss cc;
91 cc.x=i;
92 cc.y=j-1;
93 cc.id=dd[i][j-1];
94 cc.cost=ma[i][j-1];
95 vec[id].push_back(cc);
96 cc.x=i;
97 cc.y=j;
98 cc.id=dd[i][j];
99 cc.cost=ma[i][j];
100 vec[dd[i][j-1]].push_back(cc);
101 }
102 if(i+1<k&&dd[i+1][j]!=-1)
103 {
104 ss cc;
105 cc.x=i+1;
106 cc.y=j;
107 cc.id=dd[i+1][j];
108 cc.cost=ma[i+1][j];
109 vec[id].push_back(cc);
110 cc.x=i;
111 cc.y=j;
112 cc.id=dd[i][j];
113 cc.cost=ma[i][j];
114 vec[dd[i+1][j]].push_back(cc);
115 }
116 if(j+1<k&&dd[i][j+1]!=-1)
117 {
118 ss cc;
119 cc.x=i;
120 cc.y=j+1;
121 cc.id=dd[i][j+1];
122 cc.cost=ma[i][j+1];
123 vec[id].push_back(cc);
124 cc.x=i;
125 cc.y=j;
126 cc.id=dd[i][j];
127 cc.cost=ma[i][j];
128 vec[dd[i][j+1]].push_back(cc);
129 }
130 id++;
131 }
132 }
133 dj(0,id);
134 LL maxx=1e18;
135 for(i=0; i<id; i++)
136 {
137 if(node[i].flag)
138 {
139 if(maxx>d[i])
140 {
141 maxx=d[i];
142 }
143 }
144 }
145 LL akk=0;
146 for(i=0; i<id; i++)
147 {
148 if(maxx==d[i]&&node[i].flag)
149 {
150 akk=akk+sum[i];
151 akk%=mod;
152 }
153 }
154 printf("%lld\n",akk);
155 }
156 return 0;
157 }
158 void dj(int n,int id)
159 {
160 int i,j,k;
161 fill(d,d+10005,1e9);
162 d[n]=ma[0][0];
163 memset(flag,0,sizeof(flag));
164 while(true)
165 {
166 int l=-1;
167 for(i=0; i<id; i++)
168 {
169 if((l==-1||d[i]<d[l])&&flag[i]==false)
170 {
171 l=i;
172 }
173 }
174 if(l==-1)
175 {
176 return ;
177 }
178 flag[l]=true;
179 ss ask=node[l];
180 int x=ask.x;
181 int y=ask.y;
182 int ac=ask.id;
183 if(l==0)
184 {
185 sum[l]=1;
186 }
187 else
188 {
189
190 for(i=0; i<vec[ac].size(); i++)
191 {
192 ss pp=vec[ac][i];
193 if(d[pp.id]+(LL)ma[x][y]==d[l])
194 sum[l]=sum[pp.id]+sum[l];
195 sum[l]%=mod;
196 }
197 }
198 for(i=0; i<vec[ac].size(); i++)
199 {
200 ss pp=vec[ac][i];
201 if(d[pp.id]>d[l]+pp.cost)
202 d[pp.id]=d[l]+pp.cost;
203 }
204 }
205 }
Optimal Symmetric Paths(UVA12295)的更多相关文章
- FAQ: Automatic Statistics Collection (文档 ID 1233203.1)
In this Document Purpose Questions and Answers What kind of statistics do the Automated tasks ...
- Contest2073 - 湖南多校对抗赛(2015.04.06)
Contest2073 - 湖南多校对抗赛(2015.04.06) Problem A: (More) Multiplication Time Limit: 1 Sec Memory Limit: ...
- Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ2112 Optimal Milking
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17811 Accepted: 6368 ...
- Optimal Milking POJ - 2112 (多重最优匹配+最小费用最大流+最大值最小化 + Floyd)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19347 Accepted: 690 ...
- POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 20262 Accepted: 7230 ...
随机推荐
- 突破冯·诺依曼架构瓶颈!全球首款存算一体AI芯片诞生
过去70年,计算机一直遵循冯·诺依曼架构设计,运行时数据需要在处理器和内存之间来回传输. 随着时代发展,这一工作模式面临较大挑战:在人工智能等高并发计算场景中,数据来回传输会产生巨大的功耗:目前内存系 ...
- HTTP初识
HTTP(HyperText Transfer Protocol):超文本传输协议. URL(Uniform Resource Locator):统一资源定位符. URI(Uniform Resour ...
- C++11的auto自动推导类型
auto是C++11的类型推导关键字,很强大 例程看一下它的用法 #include<vector> #include<algorithm> #include<functi ...
- Kotlin 学习(2)
属性和字段 1.声明属性 Kotlin中可以使用var关键字声明可变属性,或者用val关键字声明只读属性,属性的类型在后面,变量名在前面,中间加冒号和空格. public class Address ...
- restful接口文档
1.先理清业务bai流程 2.定义前后端开发的接口规范.比如json的格dao式,url的格式 3.定内义接口文容档,这里的接口文档一般就是对应后台的实体reqVo(调用后台接口<控制器> ...
- Lombok安装及Spring Boot集成Lombok
文章目录 Lombok有什么用 使用Lombok时需要注意的点 Lombok的安装 spring boot集成Lombok Lombok常用注解 @NonNull @Cleanup @Getter/@ ...
- apply 和 call 的区别
相同点: 都能够改变方法的执行上下文(执行环境),将一个对象的方法交给另一个对象来执行,并且是立即执行 不同点: call方法从第二个参数开始可以接收任意个参数,每个参数会映射到相应位置的func的参 ...
- 访问Github速度很慢以及解决方法(系统通用)
原因分析1,CDN,Content Distribute Network,可以直译成内容分发网络,CDN解决的是如何将数据快速可靠从源站传递到用户的问题.用户获取数据时,不需要直接从源站获取,通过CD ...
- Nginx中指令
Rewrite模块 1 return指令 Syntax: return code [text]; return code URL; return URL; Default: - Context: se ...
- 01-gevent完成多任务
gevent完成多任务 一.原理 gevent实现多任务并不是依靠多进程或是线程,执行的时候只有一个线程,在遇到堵塞的时候去寻找可以执行的代码.本质上是一种协程. 二.代码实现 import geve ...