第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法。

在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算。不幸的是,尽管模块化的使用非常广泛,但是它不能像其它算术运算(如加法和乘法)那样容易的执行。蒙哥马利表达提供了一种解决方案,这里我们讨论另一种解决方法——伪梅森素数规约。

定义:如果一个素数\(p\)被写成如下形式,那么就称\(p\)位伪梅森素数。其中\(b=2,c=1\)时就是梅森素数。

\[P = b^n-c,其中0<|c|<2^{n/2}
\]

实际上,\(b\)总是2,我们选择\(c\)通常是32位或者64位。

通过定义很容易推导出

\[p \equiv b^n-c \equiv 0 \mod p \\
b^n \equiv c \mod p
\]

因此给定一个\(k\)位的整数\(z\),我们让\(z^{'}\)为最低\(n\)位有效位,\(z^{''}\)是高\(k-n\)位有效位,就有\(z = z^{''}2^n+z^{'}\),然后我们能重写\(z \mod p\)为

\[z \equiv z^{''}b^n+z{'} \equiv z^{''}c+z{'} \mod p
\]

重复的计算上述式子,就可以得到\(z \mod p\)的值,这个值在\(Z_p\)中。(\(Z_p\)就是模\(p\)的完全剩余系。)

下面有些需要注意的点:

​ 1.\(z^{'}\)和\(z^{''}\)都能够通过简单的移位运算获得。

​ 2.因为\(c\)被选择是一个字的长度,那么乘法计算会变得容易。

​ 3.每次迭代会减少\(k\)的值。得到的值会是\(max(k-n+w,n)\)。

因此一般来说,计算伪梅森素数的约减将会仅仅需要移位,加法和乘法。

然而,使用这种方法的缺点也很明显,因为这种实现通常需要多方使用固定的设置,这可能会导致互操作性和安全性问题。更多的细节参考[1]和[2]。

\(GF(2^n)\)是另外一个经常被用到的域。

三项式和五项式是这个领域中最长用到的模。我们将会展示三项式如果简化约减。相同的技术亦可以直接用于五项式。

这个想法和素数域的那个非常类似。假设我们有三项式\(f(x) = x^n+x^t+1\),其中 $ 0<t<n/2 $。

我们立刻就有

\[x^n \equiv x^t +1 \mod f(x)
\]

给定多项式\(z(x)\)的次数大于\(n\)。我们把\(z(n)\)写成

\[z(x) = z^{''}(x)x^n+z{'}(x)
\]

其中,\(z^{'}(x)\)是\(z(x)\)的最低\(n\)位,\(z^{''}(x)\)是剩下的位数。

然后我们就像在GF(p)中那样,我们计算模数通过:

\[z(x) \equiv z^{''}(x)x^n+z^{'}(x) \equiv z^{''}(x)(x^t+1)+z^{'}(x) \\
\equiv z^{''}(x)x^t+z^{''}(x)+z^{'}(x) \mod f(x)
\]

这个运算因为\(t\)是一个更小的数使得它变得简单了。

[2]中也描述了标准规约的另一个优化。考虑到标准的例程会规约\(z(x)\) 的次数\(m\)而不是\(f(x)\)的次数\(n\):

\[z(x) = a_mx^m+a_{m-1}x^{m-1}+...+a_1x^1+a_0x^0 \\
f(x) = x^n+x^t+1
\]

当我们尝试规约\(a_ix^i\),有下面两种情况:

  • 如果\(a_i=0\),那么就不用规约
  • 如果\(a_i=1\),1就可以进行对齐,提出一个这样的元素\(a_{i-n+t}\)和\(a_{i-n}\)。

因为添加\(0\)不会改变余数,这两种情况可以被一般化,因此我们能写下如下的标准规约程序:

Input:\(z(x)\)

Output:\(z(x)\)

1.for \(i=m\) to \(n\) by -1

2.{

3.\(a_{i-n+t}+=a_i\)

4.\(a_{i-n}+=a_i\)

5.}

使用这样算法的在软件上的优化不是明显的。但是在硬件上的优化是明显的,同时仅仅更新了\(z(x)\),不需要额外的存储。

另外一个优点就是这样的形式仅仅需要$ 0<t<n $,它能被在常量时间内执行。

[1]Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC press, 1996.

[2]Blake, Ian F., Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography. Vol. 265. Cambridge university press, 1999.

第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。的更多相关文章

  1. 第二十八个知识点:什么是公钥密码学的IND-CCA安全定义?

    第二十八个知识点:什么是公钥密码学的IND-CCA安全定义? 我们将在这篇博客中讨论公钥加密的IND-CCA安全. IND-CCA安全代表选择明文的不可伪造性.这样的安全方案的思想就是给定一个密文,攻 ...

  2. NeHe OpenGL教程 第二十五课:变形

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  3. javaSE第二十五天

    第二十五天    399 1:如何让Netbeans的东西Eclipse能访问.    399 2:GUI(了解)    399 (1)用户图形界面    399 (2)两个包:    399 (3) ...

  4. Gradle 1.12用户指南翻译——第二十五章. Scala 插件

    其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...

  5. SQL注入之Sqli-labs系列第二十五关(过滤 OR & AND)和第二十五A关(过滤逻辑运算符注释符)

    开始挑战第二十五关(Trick with OR & AND) 第二十五关A(Trick with comments) 0x1先查看源码 (1)这里的or和and采用了i正则匹配,大小写都无法绕 ...

  6. “全栈2019”Java多线程第二十五章:生产者与消费者线程详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  7. centos lamp/lnmp阶段复习 以后搬迁discuz论坛不需要重新安装,只需修改配置文件即可 安装wordpress 安装phpmyadmin 定时备份mysql两种方法 第二十五节课

    centos  lamp/lnmp阶段复习 以后搬迁discuz论坛不需要重新安装,只需修改配置文件即可 安装wordpress  安装phpmyadmin  定时备份mysql两种方法  第二十五节 ...

  8. “全栈2019”Java第二十五章:流程控制语句中循环语句while

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. 孤荷凌寒自学python第二十五天初识python的time模块

    孤荷凌寒自学python第二十五天python的time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 通过对time模块添加引用,就可以使用python的time模块来进行相关的时间操 ...

随机推荐

  1. 【Python机器学习实战】聚类算法(1)——K-Means聚类

    实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...

  2. 学习java的第十三天

    一.今日收获(前两天家里有事,博客都忘了发了,唉) 1.通过看哔哩哔哩看黑马程序员的教学视频,学习了java中的数据类型自动转换.强制转换及注意事项三节 2.简单看了看完全学习手册 二.今日问题 1. ...

  3. acute

    In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sha ...

  4. collection映射

    讲了manyToOne和oneToMany,下面来看看get方法.在之前已经说过,如果是映射单对象,直接使用association来映射.而如果关系 是一个集合,则需要使用collection来描述. ...

  5. springboot+vue集成mavon-editor,开发在线文档知识库

    先睹为快,来看下效果: 技术选型 SpringBoot.Spring Security.Oauth2.Vue-element-admin 集成mavon-editor编辑器 安装 mavon-edit ...

  6. sqlserver 各种判断是否存在(表、视图、函数、存储过程等)

    1.判断表是否存在 select * from sysobjects where id = object_id(表名) and OBJECTPROPERTY(id, N'IsUserTable') = ...

  7. Java线程安全性-原子性工具对比

    synchronized 不可中断锁,适合竞争不激烈的场景,可读性好,竞争激烈时性能下降很快 Lock 可中断锁,多样化同步,竞争激烈时能维持常态 Atomic 竞争激烈时能维持常态,比Lock性能还 ...

  8. 加密解密、食谱、新冠序列,各种有趣的开源项目Github上都有

    Github上是我们程序员学习开源代码.提升编程技巧的好地方.好学校,但是除了学习,小伙伴们有没有发现过Github上一些特别有意思的项目呢? 今天TJ君就来和大家分享几个自认为特别有趣的开源项目: ...

  9. 发布iOS应用(xcode5)到App Store(苹果商店) 详细解析

    发布iOS应用(xcode5)到App Store(苹果商店) 详细解析 作者:Memory 发布于:2014-8-8 10:44 Friday IOS 此教程可能不太适合,请移步至最新最全的:201 ...

  10. C# ASP.NET MVC/WebApi 或者 ASP.NET CORE 最简单高效的跨域设置

    概述 前面写了一篇:<C# ASP.NET WebApi 跨域设置>的文章,主要针对 ASP.NET WebApi 项目. 今天遇到 ASP.NET MVC 项目也需要设置跨域,否则浏览器 ...