第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。
第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法。
在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算。不幸的是,尽管模块化的使用非常广泛,但是它不能像其它算术运算(如加法和乘法)那样容易的执行。蒙哥马利表达提供了一种解决方案,这里我们讨论另一种解决方法——伪梅森素数规约。
定义:如果一个素数\(p\)被写成如下形式,那么就称\(p\)位伪梅森素数。其中\(b=2,c=1\)时就是梅森素数。
\]
实际上,\(b\)总是2,我们选择\(c\)通常是32位或者64位。
通过定义很容易推导出
b^n \equiv c \mod p
\]
因此给定一个\(k\)位的整数\(z\),我们让\(z^{'}\)为最低\(n\)位有效位,\(z^{''}\)是高\(k-n\)位有效位,就有\(z = z^{''}2^n+z^{'}\),然后我们能重写\(z \mod p\)为
\]
重复的计算上述式子,就可以得到\(z \mod p\)的值,这个值在\(Z_p\)中。(\(Z_p\)就是模\(p\)的完全剩余系。)
下面有些需要注意的点:
1.\(z^{'}\)和\(z^{''}\)都能够通过简单的移位运算获得。
2.因为\(c\)被选择是一个字的长度,那么乘法计算会变得容易。
3.每次迭代会减少\(k\)的值。得到的值会是\(max(k-n+w,n)\)。
因此一般来说,计算伪梅森素数的约减将会仅仅需要移位,加法和乘法。
然而,使用这种方法的缺点也很明显,因为这种实现通常需要多方使用固定的设置,这可能会导致互操作性和安全性问题。更多的细节参考[1]和[2]。
\(GF(2^n)\)是另外一个经常被用到的域。
三项式和五项式是这个领域中最长用到的模。我们将会展示三项式如果简化约减。相同的技术亦可以直接用于五项式。
这个想法和素数域的那个非常类似。假设我们有三项式\(f(x) = x^n+x^t+1\),其中 $ 0<t<n/2 $。
我们立刻就有
\]
给定多项式\(z(x)\)的次数大于\(n\)。我们把\(z(n)\)写成
\]
其中,\(z^{'}(x)\)是\(z(x)\)的最低\(n\)位,\(z^{''}(x)\)是剩下的位数。
然后我们就像在GF(p)中那样,我们计算模数通过:
\equiv z^{''}(x)x^t+z^{''}(x)+z^{'}(x) \mod f(x)
\]
这个运算因为\(t\)是一个更小的数使得它变得简单了。
[2]中也描述了标准规约的另一个优化。考虑到标准的例程会规约\(z(x)\) 的次数\(m\)而不是\(f(x)\)的次数\(n\):
f(x) = x^n+x^t+1
\]
当我们尝试规约\(a_ix^i\),有下面两种情况:
- 如果\(a_i=0\),那么就不用规约
- 如果\(a_i=1\),1就可以进行对齐,提出一个这样的元素\(a_{i-n+t}\)和\(a_{i-n}\)。
因为添加\(0\)不会改变余数,这两种情况可以被一般化,因此我们能写下如下的标准规约程序:
Input:\(z(x)\)
Output:\(z(x)\)
1.for \(i=m\) to \(n\) by -1
2.{
3.\(a_{i-n+t}+=a_i\)
4.\(a_{i-n}+=a_i\)
5.}
使用这样算法的在软件上的优化不是明显的。但是在硬件上的优化是明显的,同时仅仅更新了\(z(x)\),不需要额外的存储。
另外一个优点就是这样的形式仅仅需要$ 0<t<n $,它能被在常量时间内执行。
[1]Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC press, 1996.
[2]Blake, Ian F., Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography. Vol. 265. Cambridge university press, 1999.
第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。的更多相关文章
- 第二十八个知识点:什么是公钥密码学的IND-CCA安全定义?
第二十八个知识点:什么是公钥密码学的IND-CCA安全定义? 我们将在这篇博客中讨论公钥加密的IND-CCA安全. IND-CCA安全代表选择明文的不可伪造性.这样的安全方案的思想就是给定一个密文,攻 ...
- NeHe OpenGL教程 第二十五课:变形
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- javaSE第二十五天
第二十五天 399 1:如何让Netbeans的东西Eclipse能访问. 399 2:GUI(了解) 399 (1)用户图形界面 399 (2)两个包: 399 (3) ...
- Gradle 1.12用户指南翻译——第二十五章. Scala 插件
其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...
- SQL注入之Sqli-labs系列第二十五关(过滤 OR & AND)和第二十五A关(过滤逻辑运算符注释符)
开始挑战第二十五关(Trick with OR & AND) 第二十五关A(Trick with comments) 0x1先查看源码 (1)这里的or和and采用了i正则匹配,大小写都无法绕 ...
- “全栈2019”Java多线程第二十五章:生产者与消费者线程详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...
- centos lamp/lnmp阶段复习 以后搬迁discuz论坛不需要重新安装,只需修改配置文件即可 安装wordpress 安装phpmyadmin 定时备份mysql两种方法 第二十五节课
centos lamp/lnmp阶段复习 以后搬迁discuz论坛不需要重新安装,只需修改配置文件即可 安装wordpress 安装phpmyadmin 定时备份mysql两种方法 第二十五节 ...
- “全栈2019”Java第二十五章:流程控制语句中循环语句while
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- 孤荷凌寒自学python第二十五天初识python的time模块
孤荷凌寒自学python第二十五天python的time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 通过对time模块添加引用,就可以使用python的time模块来进行相关的时间操 ...
随机推荐
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
- 学习java的第十三天
一.今日收获(前两天家里有事,博客都忘了发了,唉) 1.通过看哔哩哔哩看黑马程序员的教学视频,学习了java中的数据类型自动转换.强制转换及注意事项三节 2.简单看了看完全学习手册 二.今日问题 1. ...
- acute
In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sha ...
- collection映射
讲了manyToOne和oneToMany,下面来看看get方法.在之前已经说过,如果是映射单对象,直接使用association来映射.而如果关系 是一个集合,则需要使用collection来描述. ...
- springboot+vue集成mavon-editor,开发在线文档知识库
先睹为快,来看下效果: 技术选型 SpringBoot.Spring Security.Oauth2.Vue-element-admin 集成mavon-editor编辑器 安装 mavon-edit ...
- sqlserver 各种判断是否存在(表、视图、函数、存储过程等)
1.判断表是否存在 select * from sysobjects where id = object_id(表名) and OBJECTPROPERTY(id, N'IsUserTable') = ...
- Java线程安全性-原子性工具对比
synchronized 不可中断锁,适合竞争不激烈的场景,可读性好,竞争激烈时性能下降很快 Lock 可中断锁,多样化同步,竞争激烈时能维持常态 Atomic 竞争激烈时能维持常态,比Lock性能还 ...
- 加密解密、食谱、新冠序列,各种有趣的开源项目Github上都有
Github上是我们程序员学习开源代码.提升编程技巧的好地方.好学校,但是除了学习,小伙伴们有没有发现过Github上一些特别有意思的项目呢? 今天TJ君就来和大家分享几个自认为特别有趣的开源项目: ...
- 发布iOS应用(xcode5)到App Store(苹果商店) 详细解析
发布iOS应用(xcode5)到App Store(苹果商店) 详细解析 作者:Memory 发布于:2014-8-8 10:44 Friday IOS 此教程可能不太适合,请移步至最新最全的:201 ...
- C# ASP.NET MVC/WebApi 或者 ASP.NET CORE 最简单高效的跨域设置
概述 前面写了一篇:<C# ASP.NET WebApi 跨域设置>的文章,主要针对 ASP.NET WebApi 项目. 今天遇到 ASP.NET MVC 项目也需要设置跨域,否则浏览器 ...