Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

Chapter 4 Effect Modification的更多相关文章

  1. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  2. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  3. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  4. 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改

    Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...

  5. DML_The OUTPUT Clause

    DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...

  6. Chapter Data Modification & Chapter Data Validation

    Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...

  7. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  8. thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法

    最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...

  9. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. keybd_event模拟键盘按键,mouse_event怎么用

    从 模仿UP主,用Python实现一个弹幕控制的直播间! - 蛮三刀酱 - 博客园 (cnblogs.com) 知道了 PyAutoGUI: * Moving the mouse and clicki ...

  2. Java【常用的日期操作】

    目录 1.设置时间 2.获取年月日时分秒 3.通过运算获取时间 4.和Date类转换 5.格式化时间 6.新功能LocalDate:当前日期格式化 7.示例 java.util.Calendar 类是 ...

  3. jenkins之代码回滚

    #:通过传参数方式 #:保存后就会看到这样 #;:我们在jenkins服务器写一个脚本 root@ubuntu:~# mkdir /root/script/web1 -pv mkdir: create ...

  4. 2.9 go mod 之本地仓库搭建

    wikihttps://github.com/golang/go/wiki/Modules#how-to-prepare-for-a-release参考https://blog.csdn.net/be ...

  5. Linux:spool命令

    格式调整有以下参数: set echo on/off--是否显示脚本中的需要执行的命令 set feedback on/off--是否显示 select 结果之后返回多少行的提示 set linesi ...

  6. JSP常用内置对象

    1.request 1.1getAttribute(String name) 2.getAttributeName() 3.getCookies() 4.getCharacterEncoding() ...

  7. 智龙开发板搭建llsp环境

    智龙开发板搭建llsp(linux+lighttpd+sqlite3+php)环境 1. 准备 1. 智龙开发板V3 2. 软件编译环境:VirtualBox6+CentOS6.10-i386.min ...

  8. Pagination.js + Sqlite web系统分页

    前端使用 jquery pagination.js 插件. 环境准备:jquery.js.pagination.js.pagination.css 附件下载:https://files.cnblogs ...

  9. 【简】题解 AWSL090429 【价值】

    先考虑当要选的物品一定时 显然有个贪心 wi越小的要越先选 所以先按wi从小到大拍序 因为发现正着递推要记录的状态很多 并且wi的贡献与后面选了几个物品有关 考虑正难则反 倒着递推 提前计算wi的贡献 ...

  10. 05 - Vue3 UI Framework - Button 组件

    官网基本做好了,接下来开始做核心组件 返回阅读列表点击 这里 目录准备 在项目 src 目录下创建 lib 文件夹,用来存放所有的核心组件吧.然后再在 lib 文件夹下创建 Button.vue 文件 ...