Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

Chapter 4 Effect Modification的更多相关文章

  1. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  2. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  3. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  4. 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改

    Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...

  5. DML_The OUTPUT Clause

    DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...

  6. Chapter Data Modification & Chapter Data Validation

    Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...

  7. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  8. thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法

    最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...

  9. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. Hadoop入门 集群常用知识与常用脚本总结

    目录 集群常用知识与常用脚本总结 集群启动/停止方式 1 各个模块分开启动/停止(常用) 2 各个服务组件逐一启动/停止 编写Hadoop集群常用脚本 1 Hadoop集群启停脚本myhadoop.s ...

  2. Hibernate 总结(转)

    JMX:Java Management Extensions.JCA: J2EE Contector ArchitectureJNDI: Java Namind and Directory Inter ...

  3. zabbix之主动模式和proxy的主动模式

    #:找一台新主机配置上agent,注意版本要和server端保持一样 #:官网地址:https://www.zabbix.com/documentation/4.0/zh/manual/install ...

  4. 『与善仁』Appium基础 — 24、等待activity出现

    目录 1.什么是等待activity出现 2.wait_activity()方法 3.获取当前页面的activity方法 4.综合练习 1.什么是等待activity出现 在启动APP的时候,要配置包 ...

  5. 30个类手写Spring核心原理之AOP代码织入(5)

    本文节选自<Spring 5核心原理> 前面我们已经完成了Spring IoC.DI.MVC三大核心模块的功能,并保证了功能可用.接下来要完成Spring的另一个核心模块-AOP,这也是最 ...

  6. Python第三周 数据类型:集合set、文件的读写、追加操作。

    集合 知识点:集合是无序的 格式:{1,2,3,"str_test"} set_1 = set(list1)#将列表转换为集合 集合关系测试: 集合的逻辑判断.取交集.并集.差集. ...

  7. Shell bash和sh区别

    Shell 中文意思贝壳,寓意类似内核的壳.Shell是指一种应用程序,这个应用程序提供了一个界面,用户通过这个界面访问操作系统内核的服务.Shell 是一个用 C 语言编写的程序,它是用户使用 Li ...

  8. Jenkins安装部署使用图文详解(非常详细)

    前言 最近公司需要弄一套自动化运维部署,于是抽空学习了一下,用了两天左右完成Jenkins的安装部署和各种项目的配置化,于是整理一下进行分享. 介绍 Jenkins是一个独立的开源软件项目,是基于Ja ...

  9. Linux使用SCP命令不使用密钥直接进行远程复制(SSH免密登录)

    假设A服务器要把文件复制到B服务器上 首先我们要在A服务器上生成密钥对 参考:https://www.cnblogs.com/pxblog/p/14396409.html 然后在把生成的密钥公钥id_ ...

  10. 总结Vue第三天:模块化和webpack模块化打包:

    总结Vue第三天:模块化和webpack模块化打包: 一.❀ 模块化 [导入import-----导出export] 1.为什么需要模块化? JavaScript 发展初期,代码简单地堆积在一起,只要 ...