Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

Chapter 4 Effect Modification的更多相关文章

  1. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  2. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  3. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  4. 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改

    Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...

  5. DML_The OUTPUT Clause

    DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...

  6. Chapter Data Modification & Chapter Data Validation

    Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...

  7. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  8. thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法

    最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...

  9. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. abandon, abbreviation

    abandon 近/反义词: continue, depart, desert (做动词时读作diˈzəːt), discard, give up, quit, surrender搭配: altoge ...

  2. 大数据学习day28-----hive03------1. null值处理,子串,拼接,类型转换 2.行转列,列转行 3. 窗口函数(over,lead,lag等函数) 4.rank(行号函数)5. json解析函数 6.jdbc连接hive,企业级调优

    1. null值处理,子串,拼接,类型转换 (1) 空字段赋值(null值处理) 当表中的某个字段为null时,比如奖金,当你要统计一个人的总工资时,字段为null的值就无法处理,这个时候就可以使用N ...

  3. 从源码看RequestMappingHandlerMapping的注册与发现

    1.问题的产生 日常开发中,大多数的API层中@Controller注解和@RequestMapping注解都会被使用在其中,但是为什么标注了@Controller和@RequestMapping注解 ...

  4. alert之后才执行

    如果在正常情况下,代码要在alert之后才执行,解决办法:将要执行的代码用setTimeout延迟执行即可(原因:页面未加载完毕)

  5. 【Linux】【Services】【Package】编译安装

    程序包编译安装:         testapp-VERSION-release.src.rpm --> 安装后,使用rpmbuild命令制作成二进制格式的rpm包,而后再安装:         ...

  6. kubernetes list/watch设计原理

    overview kubernetes的设计里面大致上分为3部分: API驱动型的特点 (API-driven) 控制循环(control loops)与 条件触发 (Level Trigger) A ...

  7. 4、Linux下安装tomcat

    Linux系统下安装tomcat 一.安装JDK 安装Tomcat之前需要安装JDk,安装JDk请参考:JDK安装. 二.Linux安装Tomcat 1.官网上下载Tomcat       Apach ...

  8. Mysql的基操

    创建一个数据库   (myschool是数据库名) create database myschool; 删除数据库 drop database myschool 创建一个表:(Student是 表名) ...

  9. 前端浅谈-协议相关(DNS协议)

    从应用层到实体层的协议太多了,我们并不能一一涉及,目前来说就打算整理可能会与前端相关的协议. 前端面试常会问到一个问题-"从输入一个url到页面渲染经历了哪些过程".这其实是一个相 ...

  10. 自动造数据利器,Faker 了解一下?

    1. 背景 在软件需求.开发.测试过程中,有时候需要使用一些测试数据,针对这种情况,我们一般要么使用已有的系统数据,要么需要手动制造一些数据.由于现在的业务系统数据多种多样,千变万化.在手动制造数据的 ...