NOIP 模拟 $18\; \rm 导弹袭击$
题解 \(by\;zj\varphi\)
一道凸包题
对于每个导弹,它的飞行时间就是 \(tim=\frac{A}{a_i}+\frac{B}{b_i}\) 我们设 \(x=\frac{1}{a_i},y=\frac{1}{b_i}\) 那么 \(tim=Ax+By\)
化简后 \(y=-\frac{A}{B}x+\frac{tim}{B}\) 我们要让斜率最小,那么维护一个下凸包,但斜率只能是负的,所以我们只要左下凸包
所以对于 \(A,B\) 排序,按 \(A\) 加入点,最后记得维护左下凸包,不要把超过范围的也算进去
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef double db;
static const int N=3e5+7;
int st[N],tp,pre[N],vis[N],n,mxa,mxb;
db tk[N];
struct node{int a,b,id;}mis[N];
inline int operator<(const node &n1,const node &n2) {return n1.a==n2.a?n1.b>n2.b:n1.a>n2.a;}//每个相同的 a 只有最大的 b 有用
inline db slope(node n1,node n2) {return ((db)n1.a*n2.a*(n2.b-n1.b))/((db)n1.b*n2.b*(n2.a-n1.a));}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n;p(i)) read(mis[i].a),read(mis[i].b),mis[i].id=i;
sort(mis+1,mis+n+1);
for (ri i(1);i<=n;p(i)) if(mxb<mis[i].b) mxb=mis[i].b,mxa=mis[i].a;
st[p(tp)]=1;
for (ri i(2);mxa<=mis[i].a&&i<=n;p(i)) {//mxa 防止右凸包也算进去
if (mis[i].a==mis[st[tp]].a) {
if (mis[i].b==mis[st[tp]].b)
pre[mis[i].id]=pre[mis[st[tp]].id],pre[mis[st[tp]].id]=mis[i].id;
continue;
}
while(tp>1&&slope(mis[st[tp]],mis[i])<tk[st[tp]]) --tp;
tk[i]=slope(mis[st[tp]],mis[i]),st[p(tp)]=i;
}
while(tp)
for (ri i(mis[st[tp--]].id);i;i=pre[i]) vis[i]=1;
for (ri i(1);i<=n;p(i)) if (vis[i]) printf("%d ",i);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $18\; \rm 导弹袭击$的更多相关文章
- NOIP 模拟 $18\; \rm 老司机的狂欢$
题解 \(by\;zj\varphi\) 一道很有趣的题,我用的动态开点线段树和倍增 首先对于第一问,不难想到要二分,二分时间,因为时间长一定不会比时间短能跑的人多 那么如何 check,先将所有老司 ...
- NOIP 模拟 $18\; \rm 炼金术士的疑惑$
题解 \(by\;zj\varphi\) 高斯消元 根据高中化学知识,求解方程的就是一直方程凑出来的,焓值也一样 那么对于要求的方程和一直方程,我们做一次高斯消元,以每个物质为未知数,因为它保证有解, ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 20190902+0903合集-NOIP模拟
一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- Noip模拟18 2021.7.17 (文化课专场)
T1 导弹袭击(数学) 显然,我们要找到最优的A,B使得一组a,b优于其他组那么可以列出: $\frac{A}{a_i}+\frac{B}{b_i}<\frac{A}{a_j}+\frac{B} ...
- noip提高组1999 导弹拦截
导弹拦截 背景 实中编程者联盟为了培养技术精湛的后备人才,必须从基础题开始训练. 描述 某国为了防御敌国的导弹袭击,研发出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任 ...
- 软件开发 [CJOJ 1101] [NOIP 模拟]
Description 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块,由公司里的技术人员分工完成,每个技术人员完成同一软件的不同模块 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
随机推荐
- CG-CTF single
一.拖入ida,先静态分析一下 发现有三个函数,点击进去看看 a1为0时,当a2[i]为0时,将自身的值赋值到该位置,a1为0时,就不需要动. 这三个函数都是在暗示这东西是个数独,每行每列,都有1到9 ...
- ESP32构建系统 (传统 GNU Make)
概述: 一个 ESP-IDF 项目可以看作是多个不同组件的集合,ESP-IDF 可以显式地指定和配置每个组件.在构建项目的时候,构建系统会前往 ESP-IDF 目录.项目目录和用户自定义目录(可选)中 ...
- ESP-ADF相关学习笔记
1.makefile:定义了一系列的规则来指定哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为 makefile就像一个Shell脚本一样,也可以执行操作 ...
- http、tcp和socket简单理解
1.Http属于应用层,主要解决如何包装数据. 2.Tcp属于传输层,主要解决数据如何在网络上传输. 3.Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API) ...
- 「AGC029C」Lexicographic constraints
「AGC029C」Lexicographic constraints 传送门 好像这个题非常 easy. 首先这个答案显然具有可二分性,所以问题转化为如何判定给定的 \(k\) 是否可行. 如果 \( ...
- nmcli device and nmcli connection
NetworkManager是RHEL 7之后推出的有效管理网络的服务 NetworkManager通过工具nmcli来管理网卡 网卡属于物理硬件,NetworkManager属于软件层面,如何通过软 ...
- 超详细!搭建本地大数据研发环境(16G内存+CDH)
工欲善其事必先利其器,在经过大量的理论学习以后,需要有一个本地的研发环境来进行练手.已经工作的可以不依赖于公司的环境,在家也可以随意的练习.而自学大数据的同学,也可以进行本地练习,大数据是一门偏实践的 ...
- GCD SUM
GCD SUM 求 \[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) \] 将原式变换得到 \[\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{ ...
- js中==和===的区别以及总结
js中==和===的区别以及总结 学习js时我们会遇到 == 和 === 两种符号,现做总结如下 两种符号的定义 "==" 叫做相等运算符 "===" 叫做严格 ...
- Tom_No_01 IDEA tomcat 源码环境搭建
1.下载源码 apache-tomcat-8.5.50-src 2.下载源码 放D盘,解压后根目录新建pom.xml和catalina-home pom.xml文件中内容为 <?xml vers ...