【Paper】智能家居
From: http://liudongdong1.github.io
keyword:
- Human-centered computing , LoRa
Paper: WIDESEE
WIDESEE: Towards Wide-Area Contactless Wireless Sensing
Summary
- WIDESEE presents solutions across software and hardware to overcome two aspects of challenges for wide-range contactless sensing:
- the interference brought by the device mobility and LoRa’s high sensitvity
- the ambiguous target information such as location when employing just a single pair of transceivers
Research Objective
- Application Area:
- Purpose:
Proble Statement
- limited sensing range, which hinders its applications in wide-area sensing such as disaster rescue.the signals reflected from the target, which contain information related to the context of the target, are much weaker than the direct path signals between the transmitter and receiver.WiFi-based systems are only capable of performing sensing in a room-level range (i.e. approximately 3-6 m),whereas RFID or mmWave-based systems show an even smaller sensing range of 1-3 m
- LoRa offers a long propagation distance and strong penetration capability through obstacles.
challenges:
- the larger sensing range of LoRa also means the interference range is also larger due to the higher signal receiving sensitivity
redesign the antenna system and the sensing algorithm, employ a compact reconfigurable directional antenna at the receiver to narrow down the target sensing region,to stay focus on the area of interests
- a transceiver pair equipped with a single antenna does not provide us sufficient information regarding the target location since the number of unknown variables is greater than that of the constrained equations for localization
- although employing a drone can increase the sensing coverage, the vibration introduced by the drone during its operation (i.e., flying) affects the resultant signals and accordingly the target sensing performance.
level: Mobile Data Management
author: Nirmalya Roy ,School of Information Systems, Singapore Management University
date: 2015
keyword:
- energy demand estimation, ADLS
Paper: Activity-Aware Room-level Power Analytics (AARPA)
AARPA: Combining Mobile and Power-line
Sensing for Fine-grained Appliance Usage and
Energy Monitoring
Summary
- applies correlation over both macroscopic and microscopic power consumption features, to identify the total usage duration, and the total energy consumption, of individual devices, from such circuit-breaker level aggregated data.
- helps capture the energy consumption characteristics of low-load,
commonly-used domestic appliances - provides useful additional context about the lifestyle habits and context of
an individual
Related Work
- Green Building Energy Management using Plug Load Meters
- EnergyHub [1] and Greenbox [2]
- employs machine learning on data collected from infrastructure sensors,such as magnetic sensors, has been proposed to infer fine grained power usage in home [8]
- Smartphone and Sensor based Energy Prediction:
- Beware [3] provides the user information on energy consumption of entire home. Detect the electricity consumption of different devices and notify the user if the devices use more energy than expected
- Energy Lens [11] provides deeper real time visibility of plug-load
energy consumption in buildings. It uses the mobile phone to provide a consumer with real-time energy analytics
Research Objective
- the ability to precisely capture the usage profile of everyday consumer appliances also provides insight into an individual’s context
- Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals
- develop a novel correlation-based approach called CBPA to identify individual
appliances based on both their unique transient and steady state power signatures. - uses mobile sensing to first infer high-level activities of daily living (ADLs), and
then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point
Paper: Co-locating services
Co-locating services in IoT systems to minimize
the communication energy cost
Research Objective
- Purpose:
- .An issue for perpetually running and managing these IoT devices is the energy cost. One energy saving strategy is to co-locate several services on one device in order to reduce the computing and communication energy.
- propose a service merging strategy for mapping and co-locating multiple services on devices.
Proble Statement
- various device sleep scheduling algorithms [3] to keep some devices power off
- running at a low-power mode. Another approach is to reduce
network communication traffic to conserve energy
level: PACM Interact. Mob
keyword:
- Human-centered computing, Networks(wireless access points, base stations)
Paper: RFID Light Bulb
RFID Light Bulb: Enabling Ubiquitous Deployment of Interactive
RFID Systems
Summary
- leverage advances in semiconductor optics, RF antenna design and system integration to create a hybrid RFID reader and smart LED lamp, in the form factor of a standard light bulb
- handle the difficult of deployment RFID system
Research Objective
- Application Area:
- Purpose:
Proble Statement
RFID :inexpensive, wireless, batery-free connectivity and interactivity for objects that are traditionally not instrumented
complexity of installing bulky RFID readers, antennas, and their supporting power and network infrastructure
IOT devices:door locks, security cameras, thermostats, voice-based personal assistants, and even simple butons that automate internet retail purchases.
Bluetooth Low Energy, Zigbee, and Wi-Fi are all examples of networking technologies that connect these diferent classes of devices.RFID application:
- tracking the currently open page of a book
- sensing liquid level in container
- device free action recognition
- touch sensitive buttons
- thermometer
- contact switch
Methods
- system overview:
Application
- Light-Assisted Navigation
- Infrastructure Monitoring
- Ambient Contextual Timers: a timer in conjunction with a
machine to inform a user that a particular activity has completed - Prepackaged Content:
Conclusion
- designed an RFID Light Bulb (Figure 1): a Wi-Fi-connected smart LED bulb
that contains an integrated RFID reader and antenna - rototype whole-house interactive RFID applications that demonstrate the efectiveness of our bulbs
level: Journal of Intelligent & Fuzzy Systems
author: School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom
date: 2019
keyword:
- A ctivity recognition, knowledge-driven approaches, data-driven approaches, activity model, hybrid reasoning
Paper: Hybrid knowledge-data-driven
A hybrid approach of knowledge-driven
and data-driven reasoning for activity
recognition in smart homes
Summary
- presents an alternative approach by combining knowledge-driven with data-driven reasoning to allow activity models to evolve and adapt automatically based on users’ particularities
- a knowledge-driven reasoning is presented for inferring an initial activity model. The model is then trained using data-driven techniques to produce a dynamic activity model that learns users’ varying action
Research Objective
- Application Area: support and assistance for elderly, disabled and cognitively impaired people
Proble Statement
- activity recognition has become a primary indicator to measure physical and mental health of elderly individuals based on their ability to perform basic activities such as bathing, eating ,cooking (这是想问题的一个切入点)
- there are different types of activities. The activity can be broken down into multiple levels of actions
- there is no strict constraint on the sequence of actions to perform the activities,depending on user’s preference and particularities
- the actions in which the activity is performed can be dynamic evolved.
- the model should be adapt to different environment and user’s behaviours
previous work:
- smart home:
- identify activities and patterns of daily routines context : location, time,object used ..
- monitor environmental changes using sensors installed in different locations and deployed on various objects [4]
- activity recognition [5], predicting human behaviour [6] and detecting
early diseases [7, 8]
- data-driven: machine learning or deep learning, code-start problem that require large sensor data, difficult to adapt in different environment
- knowledge-driven reasoning: priori knowledge about the world to build activities models using knowledge representation. the inference model is static and general ,difficult to recognize every type of human activities in home setting
- rule based systems
- case based systems
- ontological reasoning
Methods
Problem Formulation:
system overview:
- The common-sense knowledge base contains a collection of semantic concepts and their relationships that are related to the basic understanding of the
environment. - the domain-specific knowledge base is used to represent concepts that are specifically described with respect to a certain domain in order to improve the principal understanding of the environment
- scenario:
- infer users’ activities through a description logic rule-based inference system:
level: CVPR
author:Fl´avia Dias Casagrande and Evi Zouganeli
date: 2019
keyword:
- Smart home Sequence prediction Time prediction Binary sensors · Recurrent neural network · Probabilistic Methods
Paper: Activity Recognition Prediction
Activity Recognition and Prediction in Real
Homes
Summary
- using probabilistic methods and Long Short-Term Memory (LSTM) networks, include the time information to improve prediction accuracy, as well as predict both the next sensor event and its time of occurrence using one LSTM model
Research Objective
Application Area:assisting functions with reminders or encouragement, diagnosis tools, alarm creation, prediction ,anticipation and prevention of hazardous situations
Purpose: activity recognition and prediction in real homes using either binary sensor data or
depth video data classify four activities –no movement, standing up, sitting down, and TV interactionsystem overview:
Notes
- 是一家公司的文章介绍:https://www.roommate.no/en/home/
Paper: Kinectcs datasets
A Short Note on the Kinetics-700 Human Action Dataset
Summary
- http://deepmind.com/kinetics.
- 1)action class sourcing, 2) candidate video matching, 3) candidate clip selection, 4) human verification, 5) quality analysis and filtering
keyword:
- smarthome
Paper: Unified Frame ADL RecPre
A Unified Framework for Activity Recognition-Based Behavior Analysis and
Action Prediction in Smart Homes
Summary
- Application Area: lifestyle analysis, security and surveillance, and interaction monitoring
keyword:
- activity prediction,Location-based social networks(LBSNs)
Paper: What’s Your Next Move
What’s Your Next Move: User Activity Prediction in Location-based
Social Networks
Summary
- exploit the check-in category information to model the underlying user movement pattern
- uses a mixed hidden Markov model to predict the category of user activity at the nect step and then predict the most likely location given the estimated category distribution
- Difficult: data sparseness , the semantic meaning
- 一种基于签到的思想
Steps:
- predicting the category of user activity at the next step
- predicting a location given the estimated category distribution
keyword:
- activity prediction,Location-based social networks(LBSNs)
Paper: SmrtFridge
SmrtFridge: IoT-based, User Interaction-Driven Food Item &
!antity Sensing
Summary
- identify the individual food items that users place in or remove from a fridge
- estimate the residual quantity of food items inside a refrigerated container (opaque or transparent)
- Previous Works: RFID, camera, weight sensors
Paper: Ambient-Assisted Living Tools
A Survey on Ambient-Assisted Living Tools
for Older Adults
Summary
- 相关背景介绍,在写论文时候可以参考
智慧家庭中定位和行为预测
下图网格表示一个房间,网格中每一个点摆放RFID标签,rfid标签存储物体或者位置相关信息,可以根据相位或者RSSI分为几个状态,并将值量化。
- 想法一: 同一时候,会得到一张图,图中每个一像素点位置代表房间内rfid的位置,其值表示rfid对应的量化状态。 可以时间基本的定位,或者人物交互活动
- 想法二: 类比图像光流算法,根据状态点的变化移动,根据状态变化轨迹,可以识别粗粒度行为,进行相应的预测。
【Paper】智能家居的更多相关文章
- 一百元的智能家居——Asp.Net Mvc Api+讯飞语音+Android+Arduino
大半夜的,先说些废话提提神 如今智能家居已经不再停留在概念阶段,高大上的科技公司都已经推出了自己的部分或全套的智能家居解决方案,不过就目前的现状而言,大多还停留在展厅阶段,还没有广泛的推广起来,有人说 ...
- 基于Laravel+Swoole开发智能家居后端
基于Laravel+Swoole开发智能家居后端 在上一篇<Laravel如何优雅的使用Swoole>中我已经大概谈到了Laravel结合Swoole的用法. 今天,我参与的智能家居项目基 ...
- 利用Node.js对某智能家居服务器重构
原文摘自我的前端博客,欢迎大家来访问 http://www.hacke2.cn 之前负责过一个智能家居项目的开发,外包重庆一家公司的,我们主要开发服务器监控和集群版管理. 移动端和机顶盒的远程通信是用 ...
- 基于能量收集的智能家居-2013国家级大学生创业实践项目申报_商业计划书_V0.2
SmartHome项目商业计划 基于能量收集的 免电池无线智能家居系统 IA-SmartHome团队 2012.12 l 基于无线的智能家居解决方案,节省施工成本: l 基于能 ...
- 智能家居常用WiFi模块
WiFi模块 WiFi模块就是整个系统的控制中心,控制很简单,就是输出一个开关信号控制继电器,而这个模块的核心是WiFi的连接,手机连接WiFi时需要扫描,输入密码,而这类本身没有屏幕和键盘的硬件设备 ...
- 苹果宣布首批HomeKit智能家居设备将在6月上市
凤凰科技讯 北京时间5月15日消息,据<华尔街日报>网络版报道,苹果周四宣布,首批支持其HomeKit平台的智能家居设备将在下月上市.这一消息的发布也驳斥了关于该苹果家庭自动化软件平台将推 ...
- 【智能家居篇】wifi在智能家居中的应用
转载请注明出处:http://blog.csdn.net/Righthek 谢谢! 在设计智能家居系统方案时,一个很关键的point就是组网方式.组网方式关系到整个智能家居系统的稳定性.可扩展性.实时 ...
- android智能家居在线语音控制
对于android 智能家居项目,如果能实现语音控制,无疑会丰富项目功能,改善用户体验,android语音识别的方法有三种:一是使用intent调用语音识别程序,二 是应用程序自己调用语音识别库,三是 ...
- zigbee智能家居基础扫盲
zigbee Zigbee是基于IEEE802.15.4标准的低功耗个域网协议.根据这个协议规定的技术是一种短距离.低功耗的无线通信技术.这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和&qu ...
- 【转】火火火火火!看HomeKit如何改变物联网和智能家居?
摘要: 智能家居并非新概念,然而在苹果等巨头插足之前,它却只是一盘散沙,各自为营,苹果又将如何凭借HomeKit构建起拥有统一界面和控制中心的平台来实现各种智能家居设备与应用之间的无缝连接,真正实现智 ...
随机推荐
- 使用Hugo框架搭建博客的过程 - 主题配置
前言 博客部署完成后,恭喜你可以发表第一篇:Hello world!但是LoveIt这么好用的主题,不配置一番可惜了. 基本功能配置 主题配置最好参考已有的配置,比如LoveIt作者写的介绍,还有主题 ...
- ARM汇编指令-STM32单片机启动
EQU 给数字常量取一个符号名,相当于c中的define. AREA 告诉汇编器汇编一个新的代码段. SPACE 分配内存空间. PRESERVE 当前文件堆栈按照8字节对齐. EXPORT 声 ...
- mybatis 加载策略及注解开发
1. 延迟策略 在需要用到数据时在加载相关数据,常用于一对多关系, 优点:先从单表查询,需要时再从关联表去关联查询,大大提高数据库性能, 缺点:当需要用到数据时,才会进行数据库查询,这样在大批量数据查 ...
- Python报错“UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 0: ordinal not in range(128)”的解决办法
最近在用Python处理中文字符串时,报出了如下错误: UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 0: ...
- [刘阳Java]_精选20道Java多线程面试题
1. 多线程使用的优缺点? 优点: (1)多线程技术使程序的响应速度更快 (2)当前没有进行处理的任务可以将处理器时间让给其它任务 (3)占用大量处理时间的任务可以定期将处理器时间让给其它任务 (4) ...
- Java 并发之 Fork/Join 框架
什么是 Fork/Join 框架 Fork/Join 框架是一种在 JDk 7 引入的线程池,用于并行执行把一个大任务拆成多个小任务并行执行,最终汇总每个小任务结果得到大任务结果的特殊任务.通过其命名 ...
- centos7下安装mycat中间件 笔记
1. 下载 # wget http://dl.mycat.org.cn/1.6.7.4/Mycat-server-1.6.7.4-release/Mycat-server-1.6.7.4-releas ...
- POJ1934 Trip 题解
LCS 模板,但要输出具体方案,这就很毒瘤了. 神奇的预处理:fa[i][j]表示在 \(a\) 串的前 \(i\) 个字符中,字母表第 \(j\) 个字母最晚出现的位置,fb[i][j]同理. 这样 ...
- Django关闭html转义
我们在views定义的html语句传递到html文件会按照原样式输出,并把我们定义的html标签页输出了,这是因为django模板默认帮我们开起了html转义功能 {{ lp}} <hr> ...
- jvm源码解读--12 invokspecial指令的解读
先看代码 package com.zyt.jvmbook; public class Girl extends Person{ public Girl() { int a; } @Override p ...