Codeforces 题目传送门 & 洛谷题目传送门

本来说好的不做,结果今早又忍不住开了道题/qiao

我们称度为 \(1\) 的点为叶节点,度大于 \(1\) 的点为非叶节点。

首先考虑如何求出叶节点及其连边情况,这里不妨假设叶节点个数 \(\ge 3\)​,对于 \(\le 2\)​ 的情况特判掉,具体如何特判见下文。可以发现,对于两个非叶节点 \(x,y\)​,如果它们之间存在边相连,那么就一定存在两个点,到它们之间距离 \(\le 2\)​ 的点的集合恰好是 \(\{x,y\}\)​,具体构造就是取一个与 \(x\)​ 相连且 \(\ne y\)​ 的点,再取一个与 \(y\)​ 相连且 \(\ne x\)​ 的点。而如果存在两个点,满足它们交集恰好是 \(\{x,y\}\)​,那 \(x,y\)​ 之间必然存在边相连,否则如果 \(x,y\)​ 距离为 \(2\)​,那么这两点的交集中如果包含 \(x,y\)​,那么必然包含 \(x,y\)​ 的公共邻居,也就是 \(x,y\)​ 中间夹着的那个点,如果 \(x,y\)​ 距离为 \(3\)​,那么道理也是类似的,如果这两点的交集中如果包含 \(x,y\)​,那么必然包含 \(x,y\)​ 的之间的两个点,如果 \(x,y\) 距离 \(\ge 4\) 那么不可能存在两个点,到它们距离 \(\le 2\) 的点集中都包含 \(x,y\)​。这个可以使用 bitset 及其自带 _Find_first_Find_next 函数解决。

这样我们可以知道非叶节点之间的连边情况,接下来考虑如何将叶子挂上去。首先思考如何判断一个点是否对应一个叶节点的集合,显然对于一个非叶节点 \(x\) 及一个与其相连的叶节点 \(y\),必然有 \(y\) 对应的集合完全包含在 \(x\) 对应的集合中,这样我们遍历到一个点时,我们检验是否存在另一个集合完全包含在该集合中,如果有则跳过这个集合。这样可以保证我们遍历到的所有集合要么属于一个叶节点,要么属于一个不与任何点相连的非叶节点,对于后者而言显然不会对答案产生任何影响,因此我们不跳过它也罢。

接下来考虑如何判定一个叶节点的集合连向的是哪个非叶节点,我们去掉该集合中所有叶子节点(显然在第一步中我们已经知道哪些是叶子节点,而哪些不是),那么可以发现,去掉叶子节点后的集合,等于所有和与其相连的非叶节点的非叶节点组成的集合,而对于每个非叶节点,我们是知道哪些非叶节点与其相连的,这个同样可以 bitset 优化。

接下来找出这个非叶节点之后我们就可以知道所有与这个非叶节点相邻的叶节点了。具体方法就是找到这个集合中所有叶节点,显然这些叶节点都与这个非叶节点相邻。

这样我们就完美地处理了非叶节点个数 \(\ge 3\) 的情况,那如果非叶节点个数 \(\le 3\) 怎么办呢?

显然如果非叶节点个数 \(=1\),那么答案就是个菊花图,随便构造一个菊花图就行了。

如果非叶节点个数 \(=2\),那么所有叶子节点对应的集合大小都 \(<n\),而这种情况连向什么非叶节点是不重要的,因此我们仿照上面的过程,即对于一个叶子节点对应的集合,我们找出集合中所有叶子节点,那么这些叶子节点都应连向同一个非叶节点。

时间复杂度 \(\dfrac{n^3}{\omega}\)。

const int MAXN=1000;
int n;
bitset<MAXN+5> a[MAXN+5],b[MAXN+5],is;
int main(){
scanf("%d",&n);bool flg=1;
for(int i=1;i<=n;i++){
int len;scanf("%d",&len);flg&=(len==n);
while(len--){int x;scanf("%d",&x);a[i][x]=1;}
} if(flg){
for(int i=1;i<n;i++) printf("%d %d\n",i,n);
return 0;
} vector<pii> res;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){
bitset<MAXN+5> tmp=a[i]&a[j];
if(tmp.count()==2){
int x=tmp._Find_first(),y=tmp._Find_next(x);
if(b[x][y]) continue;
b[x].set(y);b[y].set(x);is[x]=is[y]=1;
b[x][x]=b[y][y]=1;res.pb(mp(x,y));
}
} if(is.count()==2){
int r1=0,r2=0;
static int vis[MAXN+5];
for(int i=1;i<=n;i++) if(is[i]) (r1)?(r2=i):(r1=i);
for(int i=1;i<=n;i++) if(a[i].count()<n){
for(int j=1;j<=n;j++) if(!is[j]&&a[i][j]) vis[j]=1;
break;
}
for(int i=1;i<=n;i++) if(!is[i]){
if(vis[i]) res.pb(mp(r1,i));
else res.pb(mp(r2,i));
} for(pii e:res) printf("%d %d\n",e.fi,e.se);
} else {
static bool vis[MAXN+5];
for(int i=1;i<=n;i++){
bool flg=1;
for(int j=1;j<=n;j++) if((a[i]&a[j])==a[j]&&a[i]!=a[j])
flg=0;
if(!flg) continue;
bitset<MAXN+5> tmp=a[i]&is;
for(int j=1;j<=n;j++) if(tmp[j]&&b[j]==tmp){
if(!vis[j]){
for(int k=1;k<=n;k++) if(!is[k]&&a[i][k]) res.pb(mp(j,k));
vis[j]=1;
}
break;
}
} for(pii e:res) printf("%d %d\n",e.fi,e.se);
}
return 0;
}
/*
5
5 1 2 3 4 5
4 1 3 4 5
4 3 4 5 2
3 2 5 4
3 1 4 3
*/

Codeforces 566E - Restoring Map(bitset 优化构造)的更多相关文章

  1. Codeforces.566E.Restoring Map(构造)

    题目链接 \(Description\) 对于一棵树,定义某个点的邻居集合为所有距离它不超过\(2\)的点的集合(包括它自己). 给定\(n\)及\(n\)个点的邻居集合,要求构造一棵\(n\)个点的 ...

  2. @codefoces - 566E@ Restoring Map

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 对于一棵 n 个点的树,我们称两个点是相邻的当且仅当两个点的距离 ...

  3. Codeforces Round #207 (Div. 1) D - Bags and Coins 构造 + bitset优化dp + 分段查找优化空间

    D - Bags and Coins 思路:我们可以这样构造,最大的那个肯定是作为以一个树根,所以我们只要找到一个序列a1 + a2 + a3 .... + ak 并且ak为 所有点中最大的那个,那么 ...

  4. Codeforces 788C The Great Mixing(背包问题建模+bitset优化或BFS)

    [题目链接] http://codeforces.com/problemset/problem/788/C [题目大意] 给出一些浓度的饮料,要求调出n/1000浓度的饮料,问最少需要多少升饮料 [题 ...

  5. Axel and Marston in Bitland CodeForces - 782F (bitset优化)

    题目链接 $dp[0/1][i][x][y]$表示起始边为0/1, 走$2^i$ 步, 是否能从$x$走到$y$ 则有转移方程 $dp[z][i][x][y]\mid=dp[z][i-1][x][k] ...

  6. Codeforces Round #390 (Div. 2) E(bitset优化)

    题意就是一个给出2个字符矩阵,然后进行匹配,输出每个位置的匹配的结果 (超出的部分循环处理) 一种做法是使用fft,比较难写,所以没有写 这里使用一个暴力的做法,考虑到一共只出现26个字符 所以使用一 ...

  7. Codeforces 576D - Flights for Regular Customers(bitset 优化广义矩阵乘法)

    题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,你初始在 \(1\) 号点,边上有边权 \(c_i\) 表示只有当你经过至少 \(c_i\) 条边的时候你才能经过第 \(i\) ...

  8. Codeforces 512E - Fox And Polygon(构造)

    Codeforces 题面传送门 & 洛谷题面传送门 中规中矩的构造题一道. 首先考虑将两张图都向一个中间状态转化.方便起见我们取所有点都连向 \(1\) 号点的情形作为中间状态. 考虑怎样从 ...

  9. hdu 5745 La Vie en rose DP + bitset优化

    http://acm.hdu.edu.cn/showproblem.php?pid=5745 这题好劲爆啊.dp容易想,但是要bitset优化,就想不到了. 先放一个tle的dp.复杂度O(n * m ...

随机推荐

  1. vue3.x移动端适配px2rem

    1.什么是px2rem px2rem是一个插件能将px自动转换为rem,以适配各种不同的屏幕尺寸.前端开发可以直接使用设计稿量出的尺寸或者蓝湖给出的px进行布局,这样极大的提高了开发效率. 2.前提条 ...

  2. Codeforces Round #750 (Div. 2)

    Codeforces Round #750 (Div. 2) A. Luntik and Concerts 思路分析: 首先我们可以肯定的是a,b,c都大于等于1,所以我们先让它们自己抵消自己,最后a ...

  3. [no code][scrum meeting] Alpha 9

    项目 内容 会议时间 2020-04-15 会议主题 OCR验收 会议时长 15min 参会人员 OCR组成员 $( "#cnblogs_post_body" ).catalog( ...

  4. Noip模拟5 2021.6.7

    T1 string(线段树优化) 看到数据范围就必须要想到优化,那么如何把26×M∗N 的复杂度降低呢?? 用到那个我们最不想打的数据结构--线段树...... 然而,这个线段树与往常不同,他只需要用 ...

  5. Linux多线程编程之详细分析

    线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步.互斥,这些东西将在本文中介绍.我见到这样一道面试题: 是否熟悉POSIX多线程 ...

  6. TensorFlow从入门到入坑(1)

    初识TensorFlow 一.术语潜知 深度学习:深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学 ...

  7. 【JavaScript基础】Js的定时器(你想看的原理也在哟)

    [JavaScript基础]Js的定时器(你想看的原理也在哟) 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 说明 本章是经历 ...

  8. 二进制插入 牛客网 程序员面试金典 C++ Python java

    二进制插入 牛客网 程序员面试金典 题目描述 有两个32位整数n和m,请编写算法将m的二进制数位插入到n的二进制的第j到第i位,其中二进制的位数从低位数到高位且以0开始. 给定两个数int n和int ...

  9. 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)

    题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0.   Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...

  10. hdu 1503 Advanced Fruits(DP)

    题意: 将两个英文单词进行合并.[最长公共子串只要保留一份] 输出合并后的英文单词. 思路: 求最长公共子串. 记录路径: mark[i][j]=-1:从mark[i-1][j]转移而来. mark[ ...