题面传送门

题意:

  • 有一个有向图 \(G\),其基图是一棵树
  • 求它拓扑序的个数 \(\bmod (10^9+7)\)
  • \(n \in [1,1000]\)

如果你按照拓扑排序的方法来做,那恐怕你已经想偏了。因为“求拓扑排序个数”本身就是一个 NP 问题,只能使用指数级的状压 \(dp\) 一类的算法来解决,而本题数据范围给到 \(1000\),暗示着我们要充分利用“\(G\) 的基图是一棵树”这个条件。

故可以想到树形 \(dp\)。\(dp[x][i]\) 表示将以 \(x\) 为根的子树进行拓扑排序后,\(x\) 位于拓扑序的第 \(i\) 位的方案数。

然后,然后……我就不会做了/kk

考虑转移,也就是要合并两个序列 \(x,y\),用 \(dp[x][i]\) 和 \(dp[y][j]\) 更新 \(newdp[x][k]\)。要分 \(x\) 拓扑序在 \(y\) 前面和在 \(y\) 后面两种情况。这里以 \(x\) 拓扑序在 \(y\) 前面为例。

一个非常蠢的想法是,枚举 \(x,y\) 在新序列中的位置,然后乘法原理转移。但是这样肯定爆炸。

注意到,当 \(i,j\) 确定后,\(k\) 可以取到的范围是一个区间。

因为原本在 \(x\) 前面的那 \(i-1\) 个数现在依旧在 \(x\) 前面;原本在 \(x\) 后面的数现在依旧在 \(x\) 后面。

而因为 \(x\) 的拓扑序小于 \(y\) 的拓扑序,原本在 \(y\) 后面的数现在也在 \(x\) 的后面;原本在 \(y\) 前面的那 \(j-1\) 个数,现在可以在 \(x\) 前面,也可以在 \(x\) 后面。

故我们有 \(k \in [i-1+1,i-1+j-1+1]=[i,i+j-1]\)。

\(k\) 的范围确定之后,转移当然还要使用组合数。我们考虑将原本 \(x\) 序列中的数在新序列中的位置确定下来,这样整个序列就已经确定了。

新序列中,比 \(x\) 小的那 \(k-1\) 个数中,必定有 \(i-1\) 个来自原序列,故这一部分的方案数为 \(\dbinom{k-1}{i-1}\)。

同理,填好比 \(x\) 大的数的方案数为 \(\dbinom{siz[x]+siz[y]-k}{siz[x]-i}\)

因此我们有状态转移方程:

\[newdp[x][k]+=dp[x][i] \times dp[y][j] \times \dbinom{k-1}{i-1} \times \dbinom{siz[x]+siz[y]-k}{siz[x]-i}
\]

这个转移是 \(\mathcal O(n^3)\),考虑对其进行优化。

首先给出朴素转移的伪代码:

for i from 1 to siz[x]:
for j from 1 to siz[y]:
for k from i to i+j-1:
transfer

注意到我们状态转移方程里 \(k\) 出现的频率很高,但是 \(j\) 出现的频率很低。

这启示我们,可以改变循环的顺序,先枚举 \(k\) 再枚举 \(j\),看看会发生些什么。

至于循环范围的推导……会做这道题的人应该不至于不会推导循环范围吧,实在不行打个表也行啊(

因此我们得到先枚举 \(k\) 再枚举 \(j\) 的伪代码:

for i from 1 to siz[x]:
for k from i to i+siz[y]-1:
for j from k-i+1 to siz[y]:
transfer

然后发现 \(j\) 变化的区间是一个后缀,故可以使用前缀和进行优化。

以上是 \(x\) 在 \(y\) 之前的情况。\(x\) 在 \(y\) 之后的情况也同理,只不过把 \(k\) 的变化范围改为 \([i+j,i+siz[y]]\) 而已,其余部分见代码。

/*
Contest: -
Problem: P4099
Author: tzc_wk
Time: 2020.8.14
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=1e9+7;
int n,ecnt,head[2005],to[2005],sgn[2005],nxt[2005];
ll dp[1005][1005],sum[1005][1005],C[1005][1005];
int siz[1005];
inline int get(char c){
return (c=='>')?1:-1;
}
inline void adde(int u,int v,int w){
to[++ecnt]=v;sgn[ecnt]=w;nxt[ecnt]=head[u];head[u]=ecnt;
}
inline void clear(){
ecnt=0;fill0(head);fill0(to);fill0(sgn);fill0(nxt);fill0(dp);
}
ll tmp[1005];
inline void dfs(int x,int fa){
siz[x]=1;dp[x][1]=1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i],z=sgn[i];if(y==fa) continue;dfs(y,x);
fz(i,1,siz[x]) tmp[i]=dp[x][i],dp[x][i]=0;
if(z==1) fz(i,1,siz[x]) fz(k,i,i+siz[y]-1)
dp[x][k]=(dp[x][k]+tmp[i]*(sum[y][siz[y]]-sum[y][k-i]+MOD)%MOD*C[k-1][i-1]%MOD*C[siz[x]+siz[y]-k][siz[x]-i]%MOD)%MOD;
else fz(i,1,siz[x]) fz(k,i+1,i+siz[y])
dp[x][k]=(dp[x][k]+tmp[i]*sum[y][k-i]%MOD*C[k-1][i-1]%MOD*C[siz[x]+siz[y]-k][siz[x]-i]%MOD)%MOD;
siz[x]+=siz[y];
}
// fz(i,1,siz[x]){
// cout<<x<<" "<<i<<" "<<dp[x][i]<<endl;
// }
fz(i,1,siz[x]) sum[x][i]=(sum[x][i-1]+dp[x][i])%MOD;
}
inline void prework(){
fz(i,0,1000) C[i][0]=1;
fz(i,1,1000) fz(j,1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
inline void solve(){
n=read();clear();
fz(i,1,n-1){
int u,v;char c;cin>>u>>c>>v;u++;v++;
adde(u,v,get(c));adde(v,u,-get(c));
}
dfs(1,0);
ll ans=0;
printf("%lld\n",sum[1][n]);
}
int main(){
prework();
int T=read();
while(T--) solve();
return 0;
}

洛谷 P4099 - [HEOI2013]SAO(树形 dp)的更多相关文章

  1. 洛谷 4099 [HEOI2013]SAO——树形DP

    题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...

  2. 洛谷P4099 [HEOI2013]SAO(树形dp)

    传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...

  3. 洛谷$P4099\ [HEOI2013]\ SAO\ dp$

    正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的 ...

  4. [BZOJ3167][P4099][HEOI2013]SAO(树形DP)

    题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

  5. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

  6. C++ 洛谷 2014 选课 from_树形DP

    洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...

  7. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  8. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  9. 洛谷P2607 [ZJOI2008]骑士(树形dp)

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

随机推荐

  1. javascript-jquery-文档处理

    一.移动元素 1.append():向每个匹配元素的内部追加内容.例如:$("选择器1").qppend("选择器2"):将会匹配选择器2的元素,移动到匹配选择 ...

  2. docker run 的基本用法

    docker run 命令用来创建并启动一个容器 语法:docker run [options] image [command] [args-] 示例:docker run -dit -v 别名:容器 ...

  3. java中延时队列的使用

    最近遇到这么一个需求,程序中有一个功能需要发送短信,当满足某些条件后,如果上一步的短信还没有发送出去,那么应该取消这个短信的发送.在翻阅java的api后,发现java中有一个延时队列可以解决这个问题 ...

  4. stm32学习笔记之串口通信

    在基础实验成功的基础上,对串口的调试方法进行实践.硬件代码顺利完成之后,对日后调试需要用到的printf重定义进行调试,固定在自己的库函数中. b) 初始化函数定义: void USART_Confi ...

  5. 『学了就忘』Linux基础 — 9、虚拟机中快照的使用

    目录 1.快照的含义 2.快照的使用 步骤一:创建拍摄快照 步骤二:填写快照信息并创建 步骤三:查看快照 步骤四:操作快照 3.管理虚拟机小技巧 4.关于快照说明 快照和克隆是VMware中两个非常实 ...

  6. Vulnstack内网靶场3

    Vulnstack内网靶场3 (qiyuanxuetang.net) 环境配置 打开虚拟机镜像为挂起状态,第一时间进行快照,部分服务未做自启,重启后无法自动运行. 挂起状态,账号已默认登陆,cento ...

  7. PSS--待看

    转载:浅谈可移植激励规范(PSS)复用策略_路科验证-CSDN博客 译者按 :当今硬件设计变得愈加复杂,如何创建出足够的测试来保证设计的正确性是每个硬件工程师需要面对的问题.Accellera的可移植 ...

  8. Manacher算法 求 最长回文子串

    1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...

  9. SpringBoot教程(学习资源)

    SpringBoot教程 SpringBoot–从零开始学SpringBoot SpringBoot教程1 SpringBoot教程2 --SpringBoot教程2的GitHub地址 SpringB ...

  10. Docker安装配置Tomcat

    1.使用docker pull tomcat下载镜像(不加tag则是下载最新版本) 2.运行容器(-d 后台运行:-p 指定端口映射),接的是镜像ID 3.进入容器执行命令,接的是容器ID 4.宿主机 ...