洛谷 P4099 - [HEOI2013]SAO(树形 dp)
题意:
- 有一个有向图 \(G\),其基图是一棵树
- 求它拓扑序的个数 \(\bmod (10^9+7)\)
- \(n \in [1,1000]\)
如果你按照拓扑排序的方法来做,那恐怕你已经想偏了。因为“求拓扑排序个数”本身就是一个 NP 问题,只能使用指数级的状压 \(dp\) 一类的算法来解决,而本题数据范围给到 \(1000\),暗示着我们要充分利用“\(G\) 的基图是一棵树”这个条件。
故可以想到树形 \(dp\)。\(dp[x][i]\) 表示将以 \(x\) 为根的子树进行拓扑排序后,\(x\) 位于拓扑序的第 \(i\) 位的方案数。
然后,然后……我就不会做了/kk
考虑转移,也就是要合并两个序列 \(x,y\),用 \(dp[x][i]\) 和 \(dp[y][j]\) 更新 \(newdp[x][k]\)。要分 \(x\) 拓扑序在 \(y\) 前面和在 \(y\) 后面两种情况。这里以 \(x\) 拓扑序在 \(y\) 前面为例。
一个非常蠢的想法是,枚举 \(x,y\) 在新序列中的位置,然后乘法原理转移。但是这样肯定爆炸。
注意到,当 \(i,j\) 确定后,\(k\) 可以取到的范围是一个区间。
因为原本在 \(x\) 前面的那 \(i-1\) 个数现在依旧在 \(x\) 前面;原本在 \(x\) 后面的数现在依旧在 \(x\) 后面。
而因为 \(x\) 的拓扑序小于 \(y\) 的拓扑序,原本在 \(y\) 后面的数现在也在 \(x\) 的后面;原本在 \(y\) 前面的那 \(j-1\) 个数,现在可以在 \(x\) 前面,也可以在 \(x\) 后面。
故我们有 \(k \in [i-1+1,i-1+j-1+1]=[i,i+j-1]\)。
\(k\) 的范围确定之后,转移当然还要使用组合数。我们考虑将原本 \(x\) 序列中的数在新序列中的位置确定下来,这样整个序列就已经确定了。
新序列中,比 \(x\) 小的那 \(k-1\) 个数中,必定有 \(i-1\) 个来自原序列,故这一部分的方案数为 \(\dbinom{k-1}{i-1}\)。
同理,填好比 \(x\) 大的数的方案数为 \(\dbinom{siz[x]+siz[y]-k}{siz[x]-i}\)
因此我们有状态转移方程:
\]
这个转移是 \(\mathcal O(n^3)\),考虑对其进行优化。
首先给出朴素转移的伪代码:
for i from 1 to siz[x]:
for j from 1 to siz[y]:
for k from i to i+j-1:
transfer
注意到我们状态转移方程里 \(k\) 出现的频率很高,但是 \(j\) 出现的频率很低。
这启示我们,可以改变循环的顺序,先枚举 \(k\) 再枚举 \(j\),看看会发生些什么。
至于循环范围的推导……会做这道题的人应该不至于不会推导循环范围吧,实在不行打个表也行啊(
因此我们得到先枚举 \(k\) 再枚举 \(j\) 的伪代码:
for i from 1 to siz[x]:
for k from i to i+siz[y]-1:
for j from k-i+1 to siz[y]:
transfer
然后发现 \(j\) 变化的区间是一个后缀,故可以使用前缀和进行优化。
以上是 \(x\) 在 \(y\) 之前的情况。\(x\) 在 \(y\) 之后的情况也同理,只不过把 \(k\) 的变化范围改为 \([i+j,i+siz[y]]\) 而已,其余部分见代码。
/*
Contest: -
Problem: P4099
Author: tzc_wk
Time: 2020.8.14
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=1e9+7;
int n,ecnt,head[2005],to[2005],sgn[2005],nxt[2005];
ll dp[1005][1005],sum[1005][1005],C[1005][1005];
int siz[1005];
inline int get(char c){
return (c=='>')?1:-1;
}
inline void adde(int u,int v,int w){
to[++ecnt]=v;sgn[ecnt]=w;nxt[ecnt]=head[u];head[u]=ecnt;
}
inline void clear(){
ecnt=0;fill0(head);fill0(to);fill0(sgn);fill0(nxt);fill0(dp);
}
ll tmp[1005];
inline void dfs(int x,int fa){
siz[x]=1;dp[x][1]=1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i],z=sgn[i];if(y==fa) continue;dfs(y,x);
fz(i,1,siz[x]) tmp[i]=dp[x][i],dp[x][i]=0;
if(z==1) fz(i,1,siz[x]) fz(k,i,i+siz[y]-1)
dp[x][k]=(dp[x][k]+tmp[i]*(sum[y][siz[y]]-sum[y][k-i]+MOD)%MOD*C[k-1][i-1]%MOD*C[siz[x]+siz[y]-k][siz[x]-i]%MOD)%MOD;
else fz(i,1,siz[x]) fz(k,i+1,i+siz[y])
dp[x][k]=(dp[x][k]+tmp[i]*sum[y][k-i]%MOD*C[k-1][i-1]%MOD*C[siz[x]+siz[y]-k][siz[x]-i]%MOD)%MOD;
siz[x]+=siz[y];
}
// fz(i,1,siz[x]){
// cout<<x<<" "<<i<<" "<<dp[x][i]<<endl;
// }
fz(i,1,siz[x]) sum[x][i]=(sum[x][i-1]+dp[x][i])%MOD;
}
inline void prework(){
fz(i,0,1000) C[i][0]=1;
fz(i,1,1000) fz(j,1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
inline void solve(){
n=read();clear();
fz(i,1,n-1){
int u,v;char c;cin>>u>>c>>v;u++;v++;
adde(u,v,get(c));adde(v,u,-get(c));
}
dfs(1,0);
ll ans=0;
printf("%lld\n",sum[1][n]);
}
int main(){
prework();
int T=read();
while(T--) solve();
return 0;
}
洛谷 P4099 - [HEOI2013]SAO(树形 dp)的更多相关文章
- 洛谷 4099 [HEOI2013]SAO——树形DP
题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...
- 洛谷P4099 [HEOI2013]SAO(树形dp)
传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...
- 洛谷$P4099\ [HEOI2013]\ SAO\ dp$
正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的 ...
- [BZOJ3167][P4099][HEOI2013]SAO(树形DP)
题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...
- 3167: [Heoi2013]Sao [树形DP]
3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...
- C++ 洛谷 2014 选课 from_树形DP
洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- 洛谷P2607 [ZJOI2008]骑士(树形dp)
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
随机推荐
- 【数据结构与算法Python版学习笔记】树——相关术语、定义、实现方法
概念 一种基本的"非线性"数据结构--树 根 枝 叶 广泛应用于计算机科学的多个领域 操作系统 图形学 数据库 计算机网络 特征 第一个属性是层次性,即树是按层级构建的,越笼统就越 ...
- STM32入门-STM32时钟系统,时钟初始化配置函数
在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...
- 攻防世界 杂项 2.embarrass
解1: linux环境下直接strings misc_02.pcapng | grep flag可得flag. 解2: 使用wireshark搜索flag. 解3: winhex搜索flag.
- evaluate-reverse-polist-notation leetcode C++
Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are+,-,*, ...
- hdu 2795 Billboard(单点更新,区间查询)
题意: h*w的白板. 有n个广告牌,每个广告牌是1*wi.必须放置在白板的upmost中的leftmost. 输出n个广告牌放置在第几行.如果放不下,输出-1. 数据规格: h, w, and n ...
- linux 内核源代码情景分析——linux 内存管理的基本框架
386 CPU中的页式存管的基本思路是:通过页面目录和页面表分两个层次实现从线性地址到物理地址的映射.这种映射模式在大多数情况下可以节省页面表所占用的空间.因为大多数进程不会用到整个虚存空间,在虚存空 ...
- 非对称加密和linux上的 ssh-keygen 工具使用
rsa :创造非对称加密的三个人名.原理是两个1024到2048之间的素数,以此为乘积.等... a*b=c 一般a*b为私钥端,c为公钥端.因为 c非常难算出a和b. ssh-keygen -t ...
- Docker安装配置Tomcat
1.使用docker pull tomcat下载镜像(不加tag则是下载最新版本) 2.运行容器(-d 后台运行:-p 指定端口映射),接的是镜像ID 3.进入容器执行命令,接的是容器ID 4.宿主机 ...
- ORA-01756: quoted string not properly terminated
导入sql文件报错:ORA-01756: quoted string not properly terminated 字符集的中英文问题: 临时解决方法:export NLS_LANG=AMERICA ...
- JS数据类型转换问题
一.数据类型的转换 数据类型的转换方法 强制转换(显示转换,主动转换) 字符转数值 parseInt(要转换的数值或变量) 转整数 从左向右依次转换,遇到第一个非数字的字符,停止转换 忽略小数点后的内 ...