1.plotly包

动态散点图

library(plotly)

# 交互散点图
plot_ly(data=iris,
x=~Sepal.Length,
y=~Petal.Length,
marker=list(size=10,
color='rgba(255,182,193,.9)',
line=list(color='rgba(152,0,0,.8)',
width=2))) %>%
layout(title='Styled Scatter',
yaxis=list(zeroline=FALSE),
xaxis=list(zeroline=FALSE)) #多维数据,添加标签
plot_ly(mpg,x=~hwy,y=~displ,color=~factor(cyl),
text=~paste('Model:',model)) %>%
layout(title='MPG data',font=list(family='Times New Roman',
size=13,color='forestgreen')) #参数
plot_ly(data=iris,x=~Sepal.Length,y=~Petal.Length,
type = 'scatter',#lines/markers/text/none
mode='makers',
symbol = ~Species,
#点类型
symbols = c('circle','x','o'),color = I('black'),
marker=list(size=10))
#点连线形式
trace0 <- rnorm(100,mean=5)
trace1 <- rnorm(100,mean=0)
trace2 <- rnorm(100,mean=-5)
x <- c(1:100)
data <- data.frame(x,trace0,trace1,trace2) #第一张散点图以线图形式展示
plot_ly(data,x=~x,y=~trace0,
name = 'trace 0',type = 'scatter',
mode='lines') %>%
#第二张以点连线形式展示
add_trace(y=~trace1,name='trace 1',
mode='lines+markers') %>%
#第三张普通散点图
add_trace(y=~trace2,name='trace 2',
mode='markers') %>%
layout(xaxis=list(zeroline=FALSE)) #add_trace/add_histogram/add_boxplot/add_text

其他动态图

#动态气泡图
# 动态线图
# 动态条形图
# 动态直方图
# 动态盒形图
# 动态误差条图
# 动态饼图和戒指图

2. recharts包

接近基础绘图语法。

散点图

#devtools::install_github('taiyun/recharts')
library(recharts) #散点图
ePoints(iris[,3:5],series = ~Species) ePoints(iris[,3:5],
xvar=~Petal.Length,
yvar=~Petal.Width,
series = ~Species,
xlab.name = 'Petal Length',
ylab.name = 'Petal Width',
xlab.namePosition = 'end',
ylab.namePosition = 'end',
title = 'IRIS data',
title.x = 'center',
title.y = 'top',
legend.orient = 'vertical',
legend.x = 'right',
legend.y = 'center')

其他动态图

#线图
names(mtcars)
eLine(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #条形图
eBar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #饼图
x=runif(6)
names(x)=LETTERS[1:6]
ePie(x,type='pie',title = 'PIE')
#玫瑰图
ePie(x,type = 'rose',roseType = 'radias',title = 'Rose plot') #雷达图
eRadar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #漏斗图、面积图等。。。

3. rChart包

语法近似于lattice绘图系统。在R中实现Polychart、Morris、NVD3等多个js绘图库。

https://github.com/ramnathv/rCharts

没安装上

Ploychart

4.threejs包

3D显示功能。

#install.packages('threejs')
library(threejs) #三维散点图
N <- 100
i <- sample(3,N,replace = TRUE)
x <- matrix(rnorm(N*3),ncol=3)
lab <- c('small','bigger','biggest')
scatterplot3js(x,color = rainbow(N),labels=lab[i],
size=i,renderer = "canvas") #三维地图
library(maps)
data("world.cities",package = 'maps')
cities <- world.cities[order(world.cities$pop,decreasing = TRUE)[1:1000],]
value <- 100*cities$pop/max(cities$pop)
col <- colorRampPalette(c('cyan','lightgreen'))(10)[floor(10*value/100)+1]
threejs::globejs(lat = cities$lat,
long=cities$long,
value=value,
color = col,
atmosphere = TRUE)

5.timevis包

#绘制动态时间轴,展示时间节点事件
library(timevis)
timevis(data.frame(id=1:3,
content=c('one','two','three'),
start=c('2016-01-10','2016-01-14','2016-01-19'),
end=c(NA,'2016-01-18',NA),
type=c('point','background','box')))

6.dygraphs包

#动态时间序列
library(dygraphs)
lungDeaths <- cbind(mdeaths,fdeaths)
dygraph(lungDeaths)
#选择特定时间
dygraph(lungDeaths) %>%
dyRangeSelector(dateWindow = c('1975-06-01','1978-12-31'))

7.leaflet包

js开源交互式地图包,在R中利用哦html5显示。

#install.packages('leaflet')
library(leaflet) f <- leaflet() #初始化
y <- addTiles(f) #调用地图底图
addMarkers(y,
lng = 121.445,
lat=31.1980,
popup = '复旦大学上海医学院') #添加标记 #用管道符
leaflet() %>% addTiles() %>%
addMarkers(lng = 121.445,lat = 31.1980,popup = '复旦大学医学院')

功能强大,不再演示。

R语言与医学统计图形-【31】动态交互绘图的更多相关文章

  1. R语言与医学统计图形【1】par函数

    张铁军,陈兴栋等 著 R语言基础绘图系统 基础绘图包之高级绘图函数--par函数 基础绘图包并非指单独某个包,而是由几个R包联合起来的一个联盟,比如graphics.grDevices等. 掌握par ...

  2. R语言与医学统计图形【6】低级绘图函数

    R语言基础绘图系统 基础绘图包之低级绘图函数--定义坐标轴.图例.文本 低级绘图函数:本身不具备图形绘制能力,只是在已有图形基础上添加元素. 函数 功能 arrows 添加箭头 axis 坐标轴 bo ...

  3. R语言与医学统计图形【5】饼图、条件图

    R语言基础绘图系统 基础图形--饼图.克利夫兰点图.条件图 6.饼图 pie(rep(1,26),col=rainbow(26), labels = LETTERS[1:26], #标签 radius ...

  4. R语言与医学统计图形【4】直方图、金字塔图

    R语言基础绘图系统 基础图形--直方图.金字塔图 3.直方图 参数设置及比较. op <- par(mfrow=c(2,3)) data <- rnorm(100,10,5) hist(d ...

  5. R语言与医学统计图形【3】条形图、误差图

    R语言基础绘图系统 基础图形--条形图.误差图 3.条形图 barplot接收的数据是矩阵而非数据框. data <- sample(c(50:80),5) barplot(data,col=h ...

  6. R语言与医学统计图形【2】散点图、盒形图

    R语言基础绘图系统 基础图形--散点图.盒形图 plot是一个泛型函数(generic method),对于不同的数据绘制不同的图形. par函数的大部分参数在plot中通用. 1.散点图 plot绘 ...

  7. R语言与医学统计图形-【28】ggplot2扩展包ggrepel、ggsci、gganimate、ggpubr

    ggplot2绘图系统--扩展包ggrepel.ggsci.gganimate.ggpubr等 部分扩展包可在CRAN直接下载,有些需借助devtools包从Github下载. 1. ggrepel包 ...

  8. R语言与医学统计图形【8】颜色的选取

    R语言基础绘图系统 基础绘图包之低级绘图函数--内置颜色. 1.内置颜色选取 功能657种内置颜色.colors() 调色板函数:palette(), rgb(), rainbow(). palett ...

  9. R语言与医学统计图形【7】低级绘图函数

    R语言基础绘图系统 基础绘图包之低级绘图函数--气泡图.一页多图.背景网格.添加线条和散点.数学表达式 4.气泡图 symbols是高级绘图函数,可在图上添加标记,标记的形状包括:circles,sq ...

随机推荐

  1. OO第三次博客作业--第三单元总结

    一.JML 语言的理论基础及应用工具链 JML 是一种行为接口规格语言,提供了对方法和类型的规格定义手段.通过 JML 和其支持工具,不仅可以基于规格自动构造测试用例,并整合了 SMT Solver ...

  2. Seata整合SpringBoot和Mybatis

    Seata整合SpringBoot和Mybatis 一.背景 二.实现功能 三.每个服务使用到的技术 1.账户服务 2.订单服务 四.服务实现 1.账户服务实现 1.引入jar包 2.项目配置 3.建 ...

  3. Noip模拟4(忁靈霁) 2021.6.6

    T1 随(Rand) 由杠哥大定理可得,这题目前不可做,先跳走啦,咕咕.... T2 单(single) 考场上,简单看一眼就看出是个高斯消元,然后..... 板子没记住!!! 然而这不是最糟糕的.. ...

  4. Spring源码学习之容器的基本实现(一)

    前言 最近学习了<<Spring源码深度解析>>受益匪浅,本博客是对学习内容的一个总结.分享,方便日后自己复习或与一同学习的小伙伴一起探讨之用. 建议与源码配合使用,效果更嘉, ...

  5. C 函数指针语法总结

    C 函数指针语法总结 函数指针 定义 每一个函数都占用一段内存单元,它们有一个起始地址,指向函数入口地址的指针称为函数指针. 注意:函数指针的本质是一个指针变量,且指针指向的函数的入口地址. 语法 返 ...

  6. PTA 7-3 树的遍历 (25分)

    PTA 7-3 树的遍历 (25分) 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤30),是二叉树中结点 ...

  7. FZU ICPC 2020 寒假训练 1

    B - Sum Problem In this problem, your task is to calculate SUM(n) = 1 + 2 + 3 + ... + n. Input The i ...

  8. 问题 K: 找点

    题目描述 上数学课时,老师给了LYH一些闭区间,让他取尽量少的点,使得每个闭区间内至少有一个点.但是这几天LYH太忙了,你们帮帮他吗? 输入 多组测试数据. 每组数据先输入一个N,表示有N个闭区间(N ...

  9. 问题 K: A/B Problem

    题目描述 做了A+B Problem,A/B Problem不是什么问题了吧! 输入 每组测试样例一行,首先一个号码A,中间一个或多个空格,然后一个符号( / 或者 % ),然后又是空格,后面又是一个 ...

  10. 微信小程序(七)

    组件: 组件是视图层的基本组成单元 组件自带一些功能与微信风格的样式 一个组件通常包括:开始标签和结束标签,属性用来修饰这个组件,内容在两个标签之内. 媒体组件 地图 开放能力 画布 视图容器 vie ...