数论同余学习笔记 Part 2
逆元
准确地说,这里讲的是模意义下的乘法逆元。
定义:如果有同余方程 \(ax\equiv 1\pmod p\),则 \(x\) 称为 \(a\bmod p\) 的逆元,记作 \(a^{-1}\)。
作用是抵消乘法,即 \(x\cdot a\cdot a^{-1}\equiv x\pmod p\)
进一步可以得到 \(\frac xa\equiv x\times a^{-1}\pmod p\),这也是分数取模的计算方式
最通用的求法是 exgcd 。
\(ax\equiv 1\pmod p\) 等价于 \(ax+py=1(x,y\in\Z)\),可直接用 exgcd 求解。时间复杂度 \(O(\log p)\)。
这也表明当且仅当 \(\gcd(a,p)=1\) 时,\(a\bmod p\) 的逆元存在。
OI 中为了方便,往往选择一个大质数作为模数 \(p\),以保证在给定的数据范围内逆元始终存在。
下文仅讨论 \(p\) 为质数的情况,且默认其它数均小于 \(p\)
这里我们不加证明地引入费马小定理:若 \(p\) 为质数,\(a,p\) 互质,则 \(a^{p-1}\equiv 1\pmod p\)。
则 \(a^{-1}\equiv a^{p-2}\pmod p\),故直接用快速幂计算 \(a^{p-2}\bmod p\) 即得 \(a^{-1}\)。
时间复杂度是 \(O(\log p)\),单次求逆元似乎没有更优的做法了
但要算多个逆元时有一些技巧可以做到线性
给定 \(n,p\),求 \(1\sim n\) 中所有整数在模 \(p\) 意义下的逆元。
\(1\le n\le 3\times10^6,n<p<20000528\),保证 \(p\) 为质数
有一个经典的线性递推求 \(1\sim n\) 逆元的方法。
比如我们当前求的是 \(x^{-1}\)。
设 \(p=ax+b\),则
\]
为得到 \(x^{-1}\),将两边同除以 \(x\)
\]
整理一下
\]
代入 \(a=p/x,b=p\%x\)
\]
即得递推式。
核心代码:
inv[1]=1;
for (int i=2; i<=n; ++i)
inv[i]=1ll*(p-p/i)*inv[p%i]%p;
再讲一个有点奇怪的做法
所求即 \(inv(x)=x^{p-2}\)。注意到这是个积性函数。
于是可以用欧拉筛去筛它,当 \(x\) 为质数时用快速幂直接计算。
由于 \(1\sim n\) 的质数大约有 \(\ln n\) 个,这个做法的时间复杂度是 \(O\left(\dfrac{n\log p}{\ln n}+n\right)\),比 \(O(n)\) 略慢。
实际上这个技巧原本是 \(O\left(\dfrac{n\log k}{\ln n}+n\right)\) 计算 \(1^k\sim n^k\),这里令 \(k=p-2\) 强行套用了而已
也可以考虑预处理阶乘:
fac[0]=1;
for (int i=1; i<=n; ++i) fac[i]=1ll*fac[i-1]*i%p;
inv[n]=power(fac[n],p-2,p); // 快速幂计算逆元
for (int i=n; i; --i) inv[i-1]=1ll*inv[i]*i%p;
其中 fac,inv 分别是阶乘及其逆元。显然 \(x^{-1}\equiv fac_x\cdot inv_{x-1}\pmod p\)。
时间复杂度 \(O(n)\)。在一些组合计数的题中会更自然地用到。
然后是第二道板子题
给定 \(n\) 个正整数 \(a_i\),求它们在模 \(p\) 意义下的逆元。
为减少输出量,给定常数 \(k\),只需输出 \(\sum\limits_{i=1}^n\dfrac{k^i}{a_i}\)。
\(1\le n\le 5\times10^6,2\le k<p\le 10^9,1\le a_i<p\),保证 \(p\) 为质数
令 \(A\) 为所有数的积,\(pre_i\) 为前缀积,\(suf_i\) 为后缀积,则 \(a_i^{-1}=A^{-1}\cdot pre_{i-1}\cdot suf_{i+1}\)。
于是显然可以 \(O(n)\) 计算。
本质上是因为算除法(逆元)要一个 log ,而乘法是常数级,于是化除为乘减少计算量
感觉其实就是通分(?)
数论同余学习笔记 Part 2的更多相关文章
- 五一DAY1数论学习笔记
by ruanxingzhi 整除性 如果a能把b除尽,也就是没有余数,则我们称a整除b,亦称b被a整除.(不是除以,是整除!!) 记作:\(a|b\) |这个竖杠就是整除符号 整除的性质 自反性 对 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- [学习笔记]NTT——快速数论变换
先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 快速傅里叶变换(FFT)学习笔记(其二)(NTT)
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...
- 初等数论学习笔记 III:数论函数与筛法
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...
- swift学习笔记1——基础部分
之前学习swift时的个人笔记,根据github:the-swift-programming-language-in-chinese学习.总结,将重要的内容提取,加以理解后整理为学习笔记,方便以后查询 ...
随机推荐
- C++单元测试框架gtest使用
作用 作为代码编码人员,写完代码,不仅要保证编译通过和运行,还要保证逻辑尽量正确.单元测试是对软件可测试最小单元的检查和校验.单元测试与其他测试不同,单元测试可看作是编码工作的一部分,应该由程序员完成 ...
- 简单的 for 循环也会踩的坑
前言 最近实现某个业务时,需要读取数据然后再异步处理:在 Go 中实现起来自然就比较简单,伪代码如下: list := []*Demo{{"a"}, {"b"} ...
- Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
- 一文解析Apache Avro数据
摘要:本文将演示如果序列化生成avro数据,并使用FlinkSQL进行解析. 本文分享自华为云社区<[技术分享]Apache Avro数据的序列化.反序列&&FlinkSQL解析 ...
- uniapp 兼容H5复制文本功能,亲测可用
封装copyText函数,具体如下: copyText(val){ let result // #ifndef H5 uni.setClipboardData({ data: val, success ...
- Spring企业级程序设计 • 【第1章 Spring之旅】
全部章节 >>>> 本章目录 1.1 Spring框架基础 1.1.1 Spring特点及体系结构 1.1.1 Spring的体系结构 1.1.2 使用Eclipse搭建 ...
- SpringBoot集成Actuator端点配置
1.说明 Actuator端点可以监控应用程序并与之交互. Spring Boot包括许多内置的端点, 比如health端点提供基本的应用程序运行状况信息, 并允许添加自定义端点. 可以控制每个单独的 ...
- SpringBoot 之 JSR303 数据校验
使用示例: @Component @ConfigurationProperties(prefix = "person") @Validated //使用数据校验注解 public ...
- Azure Terraform(九)GitHub Actions 实现 Infra 资源的自动化部署
思路浅析 使用 Terraform Code 部署 Azure 基础设施资源是特别受欢迎的,我曾经有写文章分享过利用 Azure DevOps 自动部署 Terraform Code 所描述的 Azu ...
- centos8 yum安装nginx后启动不了nginx
起动报下列错误 移动到安装目录下起动报下列错误,说是端口被占用 输入journalctl -xe命令查看,发现如下: 这个是一个什么错误,度娘一下SElinux 输入sestatus查看下SElinu ...