3D MinkowskiEngine稀疏模式重建

本文看一个简单的演示示例,该示例训练一个3D卷积神经网络,该网络用一个热点向量one-hot vector重构3D稀疏模式。这类似于Octree生成网络ICCV'17。输入的one-hot vector一热向量,来自ModelNet40数据集的3D计算机辅助设计(CAD)椅子索引。

使用MinkowskiEngine.MinkowskiConvolutionTranspose和 MinkowskiEngine.MinkowskiPruning,依次将体素上采样2倍,然后删除一些上采样的体素,以生成目标形状。常规的网络体系结构看起来类似于下图,但是细节可能有所不同。

在继续之前,请先阅读训练和数据加载

创建稀疏模式重建网络

要从矢量创建3D网格世界中定义的稀疏张量,需要从 1×1×1分辨率体素。本文使用一个由块MinkowskiEngine.MinkowskiConvolutionTransposeMinkowskiEngine.MinkowskiConvolutionMinkowskiEngine.MinkowskiPruning

在前进过程forward pass中,为1)主要特征和2)稀疏体素分类创建两条路径,以删除不必要的体素。

out = upsample_block(z)

out_cls = classification(out).F

out = pruning(out, out_cls > 0)

在输入的稀疏张量达到目标分辨率之前,网络会重复执行一系列的上采样和修剪操作,以去除不必要的体素。在下图上可视化结果。注意,最终的重建非常精确地捕获了目标几何体。还可视化了上采样和修剪的分层重建过程。

运行示例

要训​​练网络,请转到Minkowski Engine根目录,然后键入:

python -m examples.reconstruction --train

要可视化网络预测或尝试预先训练的模型,请输入:

python -m examples.reconstruction

该程序将可视化两个3D形状。左边的一个是目标3D形状,右边的一个是重构的网络预测。

完整的代码可以在example / reconstruction.py找到。

import os

 

import sys

 

import subprocess

 

import argparse

 

import logging

 

import glob

 

import numpy as np

 

from time import time

 

import urllib

 

# Must be imported before large libs

 

try:

 

import open3d as o3d

 

except ImportError:

 

raise ImportError('Please install open3d and scipy with `pip install open3d scipy`.')

   
 

import torch

 

import torch.nn as nn

 

import torch.utils.data

 

import torch.optim as optim

   
 

import MinkowskiEngine as ME

   
 

from examples.modelnet40 import InfSampler, resample_mesh

   
 

M = np.array([[0.80656762, -0.5868724, -0.07091862],

 

[0.3770505, 0.418344, 0.82632997],

 

[-0.45528188, -0.6932309, 0.55870326]])

   
 

assert int(

 

o3d.__version__.split('.')[1]

 

) >= 8, f'Requires open3d version >= 0.8, the current version is {o3d.__version__}'

   
 

if not os.path.exists('ModelNet40'):

 

logging.info('Downloading the fixed ModelNet40 dataset...')

 

subprocess.run(["sh", "./examples/download_modelnet40.sh"])

   
   
 

###############################################################################

 

# Utility functions

 

###############################################################################

 

def PointCloud(points, colors=None):

   
 

pcd = o3d.geometry.PointCloud()

 

pcd.points = o3d.utility.Vector3dVector(points)

 

if colors is not None:

 

pcd.colors = o3d.utility.Vector3dVector(colors)

 

return pcd

   
   
 

def collate_pointcloud_fn(list_data):

 

coords, feats, labels = list(zip(*list_data))

   
 

# Concatenate all lists

 

return {

 

'coords': coords,

 

'xyzs': [torch.from_numpy(feat).float() for feat in feats],

 

'labels': torch.LongTensor(labels),

 

}

   
   
 

class ModelNet40Dataset(torch.utils.data.Dataset):

   
 

def __init__(self, phase, transform=None, config=None):

 

self.phase = phase

 

self.files = []

 

self.cache = {}

 

self.data_objects = []

 

self.transform = transform

 

self.resolution = config.resolution

 

self.last_cache_percent = 0

   
 

self.root = './ModelNet40'

 

fnames = glob.glob(os.path.join(self.root, 'chair/train/*.off'))

 

fnames = sorted([os.path.relpath(fname, self.root) for fname in fnames])

 

self.files = fnames

 

assert len(self.files) > 0, "No file loaded"

 

logging.info(

 

f"Loading the subset {phase} from {self.root} with {len(self.files)} files"

 

)

 

self.density = 30000

   
 

# Ignore warnings in obj loader

 

o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)

   
 

def __len__(self):

 

return len(self.files)

   
 

def __getitem__(self, idx):

 

mesh_file = os.path.join(self.root, self.files[idx])

 

if idx in self.cache:

 

xyz = self.cache[idx]

 

else:

 

# Load a mesh, over sample, copy, rotate, voxelization

 

assert os.path.exists(mesh_file)

 

pcd = o3d.io.read_triangle_mesh(mesh_file)

 

# Normalize to fit the mesh inside a unit cube while preserving aspect ratio

 

vertices = np.asarray(pcd.vertices)

 

vmax = vertices.max(0, keepdims=True)

 

vmin = vertices.min(0, keepdims=True)

 

pcd.vertices = o3d.utility.Vector3dVector(

 

(vertices - vmin) / (vmax - vmin).max())

   
 

# Oversample points and copy

 

xyz = resample_mesh(pcd, density=self.density)

 

self.cache[idx] = xyz

 

cache_percent = int((len(self.cache) / len(self)) * 100)

 

if cache_percent > 0 and cache_percent % 10 == 0 and cache_percent != self.last_cache_percent:

 

logging.info(

 

f"Cached {self.phase}: {len(self.cache)} / {len(self)}: {cache_percent}%"

 

)

 

self.last_cache_percent = cache_percent

   
 

# Use color or other features if available

 

feats = np.ones((len(xyz), 1))

   
 

if len(xyz) < 1000:

 

logging.info(

 

f"Skipping {mesh_file}: does not have sufficient CAD sampling density after resampling: {len(xyz)}."

 

)

 

return None

   
 

if self.transform:

 

xyz, feats = self.transform(xyz, feats)

   
 

# Get coords

 

xyz = xyz * self.resolution

 

coords = np.floor(xyz)

 

inds = ME.utils.sparse_quantize(coords, return_index=True)

   
 

return (coords[inds], xyz[inds], idx)

   
   
 

def make_data_loader(phase, augment_data, batch_size, shuffle, num_workers,

 

repeat, config):

 

dset = ModelNet40Dataset(phase, config=config)

   
 

args = {

 

'batch_size': batch_size,

 

'num_workers': num_workers,

 

'collate_fn': collate_pointcloud_fn,

 

'pin_memory': False,

 

'drop_last': False

 

}

   
 

if repeat:

 

args['sampler'] = InfSampler(dset, shuffle)

 

else:

 

args['shuffle'] = shuffle

   
 

loader = torch.utils.data.DataLoader(dset, **args)

   
 

return loader

   
   
 

ch = logging.StreamHandler(sys.stdout)

 

logging.getLogger().setLevel(logging.INFO)

 

logging.basicConfig(

 

format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s',

 

datefmt='%m/%d %H:%M:%S',

 

handlers=[ch])

   
 

parser = argparse.ArgumentParser()

 

parser.add_argument('--resolution', type=int, default=128)

 

parser.add_argument('--max_iter', type=int, default=30000)

 

parser.add_argument('--val_freq', type=int, default=1000)

 

parser.add_argument('--batch_size', default=16, type=int)

 

parser.add_argument('--lr', default=1e-2, type=float)

 

parser.add_argument('--momentum', type=float, default=0.9)

 

parser.add_argument('--weight_decay', type=float, default=1e-4)

 

parser.add_argument('--num_workers', type=int, default=1)

 

parser.add_argument('--stat_freq', type=int, default=50)

 

parser.add_argument(

 

'--weights', type=str, default='modelnet_reconstruction.pth')

 

parser.add_argument('--load_optimizer', type=str, default='true')

 

parser.add_argument('--train', action='store_true')

 

parser.add_argument('--max_visualization', type=int, default=4)

   
 

###############################################################################

 

# End of utility functions

 

###############################################################################

   
   
 

class GenerativeNet(nn.Module):

   
 

CHANNELS = [1024, 512, 256, 128, 64, 32, 16]

   
 

def __init__(self, resolution, in_nchannel=512):

 

nn.Module.__init__(self)

   
 

self.resolution = resolution

   
 

# Input sparse tensor must have tensor stride 128.

 

ch = self.CHANNELS

   
 

# Block 1

 

self.block1 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

in_nchannel,

 

ch[0],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[0]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[0], ch[0], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[0]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolutionTranspose(

 

ch[0],

 

ch[1],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[1]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[1], ch[1], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[1]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block1_cls = ME.MinkowskiConvolution(

 

ch[1], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# Block 2

 

self.block2 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

ch[1],

 

ch[2],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[2]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[2], ch[2], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[2]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block2_cls = ME.MinkowskiConvolution(

 

ch[2], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# Block 3

 

self.block3 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

ch[2],

 

ch[3],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[3]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[3], ch[3], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[3]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block3_cls = ME.MinkowskiConvolution(

 

ch[3], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# Block 4

 

self.block4 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

ch[3],

 

ch[4],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[4]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[4], ch[4], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[4]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block4_cls = ME.MinkowskiConvolution(

 

ch[4], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# Block 5

 

self.block5 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

ch[4],

 

ch[5],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[5]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[5], ch[5], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[5]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block5_cls = ME.MinkowskiConvolution(

 

ch[5], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# Block 6

 

self.block6 = nn.Sequential(

 

ME.MinkowskiConvolutionTranspose(

 

ch[5],

 

ch[6],

 

kernel_size=2,

 

stride=2,

 

generate_new_coords=True,

 

dimension=3),

 

ME.MinkowskiBatchNorm(ch[6]),

 

ME.MinkowskiELU(),

 

ME.MinkowskiConvolution(ch[6], ch[6], kernel_size=3, dimension=3),

 

ME.MinkowskiBatchNorm(ch[6]),

 

ME.MinkowskiELU(),

 

)

   
 

self.block6_cls = ME.MinkowskiConvolution(

 

ch[6], 1, kernel_size=1, has_bias=True, dimension=3)

   
 

# pruning

 

self.pruning = ME.MinkowskiPruning()

   
 

def get_batch_indices(self, out):

 

return out.coords_man.get_row_indices_per_batch(out.coords_key)

   
 

def get_target(self, out, target_key, kernel_size=1):

 

with torch.no_grad():

 

target = torch.zeros(len(out), dtype=torch.bool)

 

cm = out.coords_man

 

strided_target_key = cm.stride(

 

target_key, out.tensor_stride[0], force_creation=True)

 

ins, outs = cm.get_kernel_map(

 

out.coords_key,

 

strided_target_key,

 

kernel_size=kernel_size,

 

region_type=1)

 

for curr_in in ins:

 

target[curr_in] = 1

 

return target

   
 

def valid_batch_map(self, batch_map):

 

for b in batch_map:

 

if len(b) == 0:

 

return False

 

return True

   
 

def forward(self, z, target_key):

 

out_cls, targets = [], []

   
 

# Block1

 

out1 = self.block1(z)

 

out1_cls = self.block1_cls(out1)

 

target = self.get_target(out1, target_key)

 

targets.append(target)

 

out_cls.append(out1_cls)

 

keep1 = (out1_cls.F > 0).cpu().squeeze()

   
 

# If training, force target shape generation, use net.eval() to disable

 

if self.training:

 

keep1 += target

   
 

# Remove voxels 32

 

out1 = self.pruning(out1, keep1.cpu())

   
 

# Block 2

 

out2 = self.block2(out1)

 

out2_cls = self.block2_cls(out2)

 

target = self.get_target(out2, target_key)

 

targets.append(target)

 

out_cls.append(out2_cls)

 

keep2 = (out2_cls.F > 0).cpu().squeeze()

   
 

if self.training:

 

keep2 += target

   
 

# Remove voxels 16

 

out2 = self.pruning(out2, keep2.cpu())

   
 

# Block 3

 

out3 = self.block3(out2)

 

out3_cls = self.block3_cls(out3)

 

target = self.get_target(out3, target_key)

 

targets.append(target)

 

out_cls.append(out3_cls)

 

keep3 = (out3_cls.F > 0).cpu().squeeze()

   
 

if self.training:

 

keep3 += target

   
 

# Remove voxels 8

 

out3 = self.pruning(out3, keep3.cpu())

   
 

# Block 4

 

out4 = self.block4(out3)

 

out4_cls = self.block4_cls(out4)

 

target = self.get_target(out4, target_key)

 

targets.append(target)

 

out_cls.append(out4_cls)

 

keep4 = (out4_cls.F > 0).cpu().squeeze()

   
 

if self.training:

 

keep4 += target

   
 

# Remove voxels 4

 

out4 = self.pruning(out4, keep4.cpu())

   
 

# Block 5

 

out5 = self.block5(out4)

 

out5_cls = self.block5_cls(out5)

 

target = self.get_target(out5, target_key)

 

targets.append(target)

 

out_cls.append(out5_cls)

 

keep5 = (out5_cls.F > 0).cpu().squeeze()

   
 

if self.training:

 

keep5 += target

   
 

# Remove voxels 2

 

out5 = self.pruning(out5, keep5.cpu())

   
 

# Block 5

 

out6 = self.block6(out5)

 

out6_cls = self.block6_cls(out6)

 

target = self.get_target(out6, target_key)

 

targets.append(target)

 

out_cls.append(out6_cls)

 

keep6 = (out6_cls.F > 0).cpu().squeeze()

   
 

# Last layer does not require keep

 

# if self.training:

 

# keep6 += target

   
 

# Remove voxels 1

 

out6 = self.pruning(out6, keep6.cpu())

   
 

return out_cls, targets, out6

   
   
 

def train(net, dataloader, device, config):

 

in_nchannel = len(dataloader.dataset)

   
 

optimizer = optim.SGD(

 

net.parameters(),

 

lr=config.lr,

 

momentum=config.momentum,

 

weight_decay=config.weight_decay)

 

scheduler = optim.lr_scheduler.ExponentialLR(optimizer, 0.95)

   
 

crit = nn.BCEWithLogitsLoss()

   
 

net.train()

 

train_iter = iter(dataloader)

 

# val_iter = iter(val_dataloader)

 

logging.info(f'LR: {scheduler.get_lr()}')

 

for i in range(config.max_iter):

   
 

s = time()

 

data_dict = train_iter.next()

 

d = time() - s

   
 

optimizer.zero_grad()

 

init_coords = torch.zeros((config.batch_size, 4), dtype=torch.int)

 

init_coords[:, 0] = torch.arange(config.batch_size)

   
 

in_feat = torch.zeros((config.batch_size, in_nchannel))

 

in_feat[torch.arange(config.batch_size), data_dict['labels']] = 1

   
 

sin = ME.SparseTensor(

 

feats=in_feat,

 

coords=init_coords,

 

allow_duplicate_coords=True, # for classification, it doesn't matter

 

tensor_stride=config.resolution,

 

).to(device)

   
 

# Generate target sparse tensor

 

cm = sin.coords_man

 

target_key = cm.create_coords_key(

 

ME.utils.batched_coordinates(data_dict['xyzs']),

 

force_creation=True,

 

allow_duplicate_coords=True)

   
 

# Generate from a dense tensor

 

out_cls, targets, sout = net(sin, target_key)

 

num_layers, loss = len(out_cls), 0

 

losses = []

 

for out_cl, target in zip(out_cls, targets):

 

curr_loss = crit(out_cl.F.squeeze(),

 

target.type(out_cl.F.dtype).to(device))

 

losses.append(curr_loss.item())

 

loss += curr_loss / num_layers

   
 

loss.backward()

 

optimizer.step()

 

t = time() - s

   
 

if i % config.stat_freq == 0:

 

logging.info(

 

f'Iter: {i}, Loss: {loss.item():.3e}, Depths: {len(out_cls)} Data Loading Time: {d:.3e}, Tot Time: {t:.3e}'

 

)

   
 

if i % config.val_freq == 0 and i > 0:

 

torch.save(

 

{

 

'state_dict': net.state_dict(),

 

'optimizer': optimizer.state_dict(),

 

'scheduler': scheduler.state_dict(),

 

'curr_iter': i,

 

}, config.weights)

   
 

scheduler.step()

 

logging.info(f'LR: {scheduler.get_lr()}')

   
 

net.train()

   
   
 

def visualize(net, dataloader, device, config):

 

in_nchannel = len(dataloader.dataset)

 

net.eval()

 

crit = nn.BCEWithLogitsLoss()

 

n_vis = 0

   
 

for data_dict in dataloader:

   
 

init_coords = torch.zeros((config.batch_size, 4), dtype=torch.int)

 

init_coords[:, 0] = torch.arange(config.batch_size)

   
 

in_feat = torch.zeros((config.batch_size, in_nchannel))

 

in_feat[torch.arange(config.batch_size), data_dict['labels']] = 1

   
 

sin = ME.SparseTensor(

 

feats=in_feat,

 

coords=init_coords,

 

allow_duplicate_coords=True, # for classification, it doesn't matter

 

tensor_stride=config.resolution,

 

).to(device)

   
 

# Generate target sparse tensor

 

cm = sin.coords_man

 

target_key = cm.create_coords_key(

 

ME.utils.batched_coordinates(data_dict['xyzs']),

 

force_creation=True,

 

allow_duplicate_coords=True)

   
 

# Generate from a dense tensor

 

out_cls, targets, sout = net(sin, target_key)

 

num_layers, loss = len(out_cls), 0

 

for out_cl, target in zip(out_cls, targets):

 

loss += crit(out_cl.F.squeeze(),

 

target.type(out_cl.F.dtype).to(device)) / num_layers

   
 

batch_coords, batch_feats = sout.decomposed_coordinates_and_features

 

for b, (coords, feats) in enumerate(zip(batch_coords, batch_feats)):

 

pcd = PointCloud(coords)

 

pcd.estimate_normals()

 

pcd.translate([0.6 * config.resolution, 0, 0])

 

pcd.rotate(M)

 

opcd = PointCloud(data_dict['xyzs'][b])

 

opcd.translate([-0.6 * config.resolution, 0, 0])

 

opcd.estimate_normals()

 

opcd.rotate(M)

 

o3d.visualization.draw_geometries([pcd, opcd])

   
 

n_vis += 1

 

if n_vis > config.max_visualization:

 

return

   
   
 

if __name__ == '__main__':

 

config = parser.parse_args()

 

logging.info(config)

 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

   
 

dataloader = make_data_loader(

 

'val',

 

augment_data=True,

 

batch_size=config.batch_size,

 

shuffle=True,

 

num_workers=config.num_workers,

 

repeat=True,

 

config=config)

 

in_nchannel = len(dataloader.dataset)

   
 

net = GenerativeNet(config.resolution, in_nchannel=in_nchannel)

 

net.to(device)

   
 

logging.info(net)

   
 

if config.train:

 

train(net, dataloader, device, config)

 

else:

 

if not os.path.exists(config.weights):

 

logging.info(

 

f'Downloaing pretrained weights. This might take a while...')

 

urllib.request.urlretrieve(

 

"https://bit.ly/36d9m1n", filename=config.weights)

   
 

logging.info(f'Loading weights from {config.weights}')

 

checkpoint = torch.load(config.weights)

 

net.load_state_dict(checkpoint['state_dict'])

   
 

visualize(net, dataloader, device, config)

3D MinkowskiEngine稀疏模式重建的更多相关文章

  1. HCNP Routing&Switching之组播技术PIM-SM 稀疏模式

    前文我们了解了组播路由协议PIM以及PIM-DM密集模式相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16084310.html:今天我们来聊一聊PI ...

  2. 协议无关组播--稀疏模式 PIM-SM

    一. 1)PIM-SM 1.PIM-SM转发.加入 PIM-SM适合于接收成员较少的环境.它与DM有何显著的区别?先看PIM-SM转发机制. 转发: 当组播数据到达路由器时,路由器也会去创建转发项.转 ...

  3. 3D数据采集和重建

    3D数据采集和重建是从传感器数据生成三维或时空模型.一般而言,这些技术和理论适用于大多数或所有传感器类型,包括光学,声学,激光扫描,[1]雷达,热学,[2]地震.[3][4] 内容 ·        ...

  4. 关于Boom 3D“夜间模式”的妙用

    Boom 3D的"夜间模式"不仅能够优化音效,减小高分贝声音的突然刺激,让你夜晚的聆听效果更加舒适,还能将音效运用到各种环境中. 下面小编就给大家讲一讲如何更好的利用Boom 3D ...

  5. 3D打印:三维智能数字化创造(全彩)

    3D打印:三维智能数字化创造(全彩)(全球第一本系统阐述3D打印与3D智能数字化的专业著作) 吴怀宇 编   ISBN 978-7-121-22063-0 2014年1月出版 定价:99.00元 42 ...

  6. 《3D打印:三维智能数字化创造(全彩)》

    <3D打印:三维智能数字化创造(全彩)> 基本信息 作者: 吴怀宇 出版社:电子工业出版社 ISBN:9787121220630 上架时间:2014-1-13 出版日期:2014 年1月 ...

  7. 打造H5里的“3D全景漫游”秘籍

    近来风生水起的VR虚拟现实技术,抽空想起年初完成的“星球计划”项目,总结篇文章与各位分享一下制作基于Html5的3D全景漫游秘籍. QQ物联与深圳市天文台合作,在手Q“发现新设备”-“公共设备”里,连 ...

  8. 《zw版·Halcon-delphi系列原创教程》 2d照片-3d逆向建模脚本

    <zw版·Halcon-delphi系列原创教程> 2d照片-3d逆向建模脚本 3D逆向建模,是逆向工程的核心要素.       3D逆向建模,除了目前通用的3D点云模式,通过2D图像实现 ...

  9. 协议无关组播-密集模式 PIM-DM

    一.组播路由协议 (一) 路由器依靠转发项来转发组播数据包.转发项的生成则是组播路由协议所要完成的任务.组播路由协议有距离矢量组播路由协议(DVMRP).协议无关组播-密集模式(PIM-DM).协议无 ...

随机推荐

  1. shackdow-socks 搭建

    搭建步骤 wget --no-check-certificate https://raw.githubusercontent.com/teddysun/shadow-1-socks_install/m ...

  2. 修改Android手机内核,绕过反调试

    本文博客链接:http://blog.csdn.net/qq1084283172/article/details/57086486 0x1.手机设备环境 Model number: Nexus 5 O ...

  3. 阿里早期Android加固代码的实现分析

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78320445 看雪上有作者(寒号鸟二代)将阿里移动早期的Android加固进行了逆 ...

  4. 【js】Leetcode每日一题-叶子相似的树

    [js]Leetcode每日一题-叶子相似的树 [题目描述] 请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 . 举个例子,如上图所示,给定一棵叶值序列为 (6, 7 ...

  5. Newtonsoft.Json的使用整理

    关于我 我的博客 | 欢迎关注 引言 json是我们在工作中经常用到的一种数据传输格式,开始过程中解析json是我们经常面对的问题.NewtonsoftJson是c#的一套json处理封装类,它可以高 ...

  6. BUA软件工程个人博客作业

    写在前面 项目 内容 所属课程 2020春季计算机学院软件工程(罗杰 任健) (北航) 作业要求 个人博客作业 课程目标 培养软件开发能力 本作业对实现目标的具体作用 阅读教材,了解软件工程,并比较各 ...

  7. 通俗易懂的JS之Proxy

    与掘金文章同步,地址:https://juejin.cn/post/6964398933229436935 什么是代理模式 引入一个现实生活中的案例 我们作为用户需要去如何评估一个房子的好坏.如何办理 ...

  8. 5分钟让你理解K8S必备架构概念,以及网络模型(下)

    写在前面 在这用XMind画了一张导图记录Redis的学习笔记和一些面试解析(源文件对部分节点有详细备注和参考资料,欢迎关注我的公众号:阿风的架构笔记 后台发送[导图]拿下载链接, 已经完善更新): ...

  9. spec2006与spec2000的对比简要说明

    ec2006使用说明  2014-10-10 五 性能测试  benchmark 一.工具介绍 SPEC CPU 2006 benchmark是SPEC新一代的行业标准化的CPU测试基准套件.重点测试 ...

  10. 5.6 date:显示与设置系统时间

    date命令 用于显示当前的系统时间或设置系统时间. date [选项] +[日期格式]   date命令的参数选项及说明 OPTION参数选项-d 时间字符串 显示指定字符串所描述的时间,而非当前时 ...