题解 最长道路tree
题目大意
给出一个\(n\)个点的树,每个点有点权,定义一条链的贡献为该链的点数乘上链上的权值和,求出树上所有链中的权值最大值。
\(n\le 5\times 10^4\)
思路
算是我入边分治的门的一道题吧。。。借鉴了\(\texttt{Miracle}\)巨佬的图、代码以及思路(那不就是转载么???(大雾
边分治的大概意思就是说,对于给出的一棵树,我们重新构造成一颗3度树,并且保证我们要求答案的所需性质并不会丢失。然后有一个性质:

于是我们找到重心边分治一下,递归次数就是\(\log n\)级别。于是就能在一个较优的时间复杂度内解决这个问题。
那我们如何对于原树建出一个保留所需信息的3度树呢?有两种方法,第一种就是这样:

第二种就是建两个虚儿子,然后按奇偶接儿子。

回到这道题,我们显然可以用第一种方法建树,这并不影响答案。我们发现我们边分治似乎对点的问题不是很好解决,但是两个点之间的点的个数等于边的个数+\(1\),于是我们就可以通过维护边数得到点数。
然后注意虚边的边权为\(0\)就好了,似乎也没有好讲的(手动划掉)。这里讲一个小细节,将两棵子树答案合并的时候可以满足必须要经过这条边,因为不经过的话可以在子树里面找到。不过实现起来的话,强制经过似乎比较好码。(雾
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define ll long long
#define MAXN 100005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,las[MAXN];
ll ans,val[MAXN];
namespace Graph{
#define fi first
#define se second
#define MP make_pair
#define PII pair<ll,ll>
int t,ta,tb,top = 1,to[MAXN << 1],wei[MAXN << 1],nxt[MAXN << 1],head[MAXN];
void Add_Edge (int u,int v,int w){to[++ top] = v,wei[top] = w,nxt[top] = head[u],head[u] = top;}
void AddEdge (int u,int v,int w){Add_Edge (u,v,w),Add_Edge (v,u,w);}
bool vis[MAXN << 1];
int siz[MAXN],lim,ed,Siz;//ed表示当前重心边
void dfs (int u,int fa){
siz[u] = 1;
for (Int i = head[u],v;i;i = nxt[i]){
if (vis[i] || (v = to[i]) == fa) continue;
dfs (v,u),siz[u] += siz[v];
int tmp = max (siz[v],Siz - siz[v]);
if (tmp < lim) lim = tmp,ed = i;
}
}
PII A[MAXN],B[MAXN],*f;
void dfs (int u,int fa,ll minn,ll dis){
minn = min (minn,val[u]),f[++ t] = MP (minn,dis);
for (Int i = head[u],v;i;i = nxt[i]){
if (vis[i] || (v = to[i]) == fa) continue;
dfs (v,u,minn,dis + wei[i]);
}
}
void Solve (int u,int S){//S表示当前子树大小
if (S <= 1) return ;
lim = Siz = S,dfs (u,0),vis[ed] = vis[ed ^ 1] = 1;
t = 0,f = A,dfs (to[ed],0,1e9,0),ta = t;
t = 0,f = B,dfs (to[ed ^ 1],0,1e9,0),tb = t;
sort (A + 1,A + ta + 1),sort (B + 1,B + tb + 1);
int j = tb;ll mx = 0,l = wei[ed];
for (Int i = ta;i;-- i){
while (j > 1 && B[j].fi >= A[i].fi) mx = max (mx,B[j --].se);
if (j < tb) ans = max (ans,(A[i].se + mx + 1 + l) * A[i].fi);
}
j = ta,mx = 0;
for (Int i = tb;i;-- i){
while (j > 1 && A[j].fi >= B[i].fi) mx = max (mx,A[j --].se);
if (j < ta) ans = max (ans,(B[i].se + mx + 1 + l) * B[i].fi);
}
int tx = to[ed],ty = to[ed ^ 1];
Solve (tx,siz[tx]),Solve (ty,S - siz[tx]);
}
}
int top = 1,cnt,to[MAXN << 1],nxt[MAXN << 1],head[MAXN];
void Add_Edge (int u,int v){to[++ top] = v,nxt[top] = head[u],head[u] = top;}
void dfs (int u,int fa){
for (Int i = head[u],v;i;i = nxt[i]){
if ((v = to[i]) == fa) continue;dfs (v,u);
if (!las[u]) Graph::AddEdge (u,v,1),las[u] = u;
else ++ cnt,Graph::AddEdge (las[u],cnt,0),Graph::AddEdge (las[u] = cnt,v,1),val[cnt] = val[u];
}
}
signed main(){
read (n),cnt = n;
for (Int i = 1;i <= n;++ i) read (val[i]);
for (Int i = 2,u,v;i <= n;++ i) read (u,v),Add_Edge (u,v),Add_Edge (v,u);
dfs (1,0),Graph::Solve (1,cnt);
write (ans),putchar ('\n');
return 0;
}
题解 最长道路tree的更多相关文章
- 【BZOJ2870】最长道路tree 点分治+树状数组
[BZOJ2870]最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来 ...
- BZOJ2870—最长道路tree
最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来往,所以每个路口i都 ...
- BZOJ2870: 最长道路tree
题解: 子树分治的做法可以戳这里:http://blog.csdn.net/iamzky/article/details/41120733 可是码量... 这里介绍另一种好写又快的方法. 我们还是一颗 ...
- 【bzoj2870】最长道路tree 树的直径+并查集
题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...
- bzoj2870最长道路tree——边分治
简化版描述: 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 有几个不同的做法: 1.sort+并查集+树的直径.边从大到小加入 ...
- BZOJ2870 最长道路tree(并查集+LCA)
题意 (n<=50000) 题解 #include<iostream> #include<cstring> #include<cstdio> #include ...
- BZOJ 2870: 最长道路tree 树的直径+并查集
挺好的一道题. 把所有点都离线下来,一个个往里加入就行了. #include <cstdio> #include <algorithm> #define N 100003 #d ...
- 2870: 最长道路tree
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2870 思路 先把树转化为二叉树 再链分治 %%yyb 代码 #include <ios ...
- bzoj 2870 最长道路tree——边分治
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2870 关于边分治:https://www.cnblogs.com/Khada-Jhin/p/ ...
随机推荐
- OVN架构
原文地址 OVN架构 1.简介 OVN,即Open Virtual Network,是一个支持虚拟网络抽象的系统. OVN补充了OVS的现有功能,增加了对虚拟网络抽象的原生(native)支持,比如虚 ...
- 读《深入理解java虚拟机》小结
之所以学习 jvm ,是因为在学习多线程相关知识时,对 volatile 关键字理解的不够透彻,总有种似懂非懂的感觉.于是通过在网上各种资料的查阅,最终将 volatile 和 jvm 联系上了,本身 ...
- DDL和客户端ip监控
DDL触发器监控脚本部署步骤 以下操作请使用sys用户: --第一步:创建表(此表主要保存ddl触发器产生的信息),可以根据不同的业务,使用相关的监控用户,在此监控用户为c##upctest 从可维护 ...
- android http get
Executors.newSingleThreadExecutor().execute{ val uri = "https://www.cnblogs.com/hangj" val ...
- javaScript知识储备
javaScript知识储备 组成 ECMAScript(核心) 提供语法.变量等,遵循ECMA-262标准 DOM(文档对象模型) 提供操作HTML标签的API,遵循W3C规范 BOM(浏览器对象模 ...
- Linux - yum 安装软件时被 PackageKit 锁定
问题描述 yum 安装软件的时候报错 sudo yum install netease-cloud-music 已加载插件:fastestmirror, langpacks /var/run/yum. ...
- linux 命令进阶篇之二
一.预备知识 选取init的进程. cat :由第一行开始显示文件内容 tac:由最后一行开始显示,有没有发现和cat是反过来写的 more:一页一页的显示内容 less:与more相似,但是可以往前 ...
- Java数值传递的时候,到底是引用传递还是值传递
java中既有引用传递也有值传递 ---->>方法形式参数上 1.值传递,基本数据类型 值传递是:传递的是存储单元中的内容,而不是存储单元的引用. 2.引用传递:引用类型,数组,集合. 引 ...
- Java数学函数的使用
Java的Math类中提供了一系列关于数学运算的静态方法,常见的运算整理如下[1] 算数运算 Math.sqrt() // 平方根 Math.cbrt() // 立方根 Math.pow(a, b) ...
- scrum项目冲刺_day07总结
摘要:今日完成任务. 1.短信服务正在进行 2.路线规划正在进行 总任务: 一.appUI页面(已完成) 二.首页功能: 1.图像识别功能(已完成) 2.语音识别功能(已完成) 3.垃圾搜索功能 4. ...