赛上想写,Track Lost 了属于是。

\(\mathscr{Intro}\)

  Min_25 筛是用于求积性函数前缀和,同时顺带求出一些“有意思”的信息的筛法。

  一些记号约定

  • \(\mathbb P\) 为素数集,对于以 \(p\) 为记号的数,有 \(p\in\mathbb P\)。
  • \(p_i\) 表示第 \(i\) 小的素数。特别地,\(p_0=1\)。
  • \(\newcommand{\lpf}[0]{\operatorname{lpf}} \lpf(n)\) 表示 \(n\) 的最小素因子。
  • \(a/b=\lfloor\frac{a}{b}\rfloor\).

\(\mathscr{Algorithm}\)

  明确我们的目标:对于积性函数 \(f(n)\),求出

\[\sum_{i=1}^nf(i).
\]

此后,我们用 \(m\) 来表示一般的求和上标,而 \(n\) 恒为问题中待求的前缀值。


  Min_25 筛分两步走。第一步:对于所有 \(x\in D=\{n/i\mid i\in[1,n]\}\),求出 \(\sum_{p\le x} f(p)\)。

  这里需要运用 Min_25 筛的核心思想:首先承认所有合数为素数,然后逐步筛掉它们,修正得到正确答案。形式地,令 \(f_P(x)\) 表示 \(f(p)\) 处关于 \(p\) 的多项式,当然我们需要把 \(f_P(x)\) 的定义域从 \(\mathbb P\) 强行钦定为 \(\mathbb N^\star\);最后,定义 \(G(m,i)\) 为

\[G(m,i)=\sum_{j=2}^m[j\in\mathbb P\lor\lpf(j)>p_i]f_P(j).
\]

它表示对于 \(2\sim m\),只用前 \(i\) 个素数做埃筛后,承认剩下的数都是素数,得到的 \(f\) 之和。可见我们的目标就是求出所有 \(G(x,\pi(\lfloor\sqrt{n}\rfloor))\)。尝试写出 \(G(m,i)\) 的递推式:

\[G(m,i)=G(m,i-1)-\sum_{j=2}^m[j\notin\mathbb P\land\lpf(j)=p_i]f_P(j).
\]

如何优化掉和式?为了将和式转化成 \(G\) 的形式,自然的想法是令 \(j\leftarrow j/p_i\),那么此时就必须追加一个条件:\(f_P(x)\) 为完全积性函数。借此进一步转化:

\[G(m,i)=G(m,i-1)-f_P(p_i)\left[ G(m/p_i,j-1)-\sum_{j<i}f_P(p_j) \right].
\]

注意 \(j<i\le\pi(\lfloor\sqrt n\rfloor)\),所以 \(P(m)=\sum_{i=1}^mf_P(p_i)\) 可以直接预处理出来。复杂度待会儿说√

  可见,就算仅使用 Min_25 筛的第一步,也能解决一些问题。例如令 \(f(n)=1\),就能计算 \(\pi(n)\)。


  第二步:对于所有 \(x\in D\),求出 \(\sum_{i=2}^xf(i)\)。

  还是利用同样的思想,定义 \(F(m,i)\) 为

\[F(m,i)=\sum_{j=2}^m[j\in\mathbb P\lor \lpf(j)>p_i]f(j).
\]

它表示素数以及所有被 \(p_{i+1..\pi(n)}\) 筛掉的合数的 \(f\) 之和,\(m\) 的最终答案即为 \(F(m,0)\)。类似与 \(G\) 的转移,不过由于 \(f\) 不一定完全积性,我们不得不枚举 \(p_i\) 的指数,有

\[F(m,i)=F(m,i+1)+\sum_{j\ge1,p_i^{j+1}\le m}f(p_i^j)F(m/p^j,i+1)+f(p_i^{j+1}).
\]

注意 \(f(p_i)\) 早已计算过,所以和式的第二项从 \(f(p_i^2)\) 开始累加。

  这里还有一种两层和式的递推方式,据说会引出 \(\mathcal O(n^{1-\epsilon})\) 的递归求解算法。我不会证,而且我一写出来就是这种一层和式,你让我怎么硬生生再套一层,所以略过,抱歉 qwq。


  对于 \(F,G\) 的状态复杂度,有

\[\begin{aligned}
T(n) &= \sum_{i=1}^{\sqrt n}\pi\left(\sqrt{n/i}\right)+\sum_{x=1}^{\sqrt n}\pi(i)\\
&= \sum_{i=1}^{\sqrt n}\mathcal O\left(\frac{\sqrt{n/i}}{\ln \sqrt{n/i}}\right)+\mathcal O\left(\frac{\sqrt i}{\ln \sqrt i}\right)\\
&= \mathcal O\left(\int_0^{\sqrt n} \frac{(n/x)^{\frac{1}{2}}}{\frac{1}{2}\ln(n/x)}\text dx\right)\\
&=\mathcal O\left(\int_0^{\sqrt n} \frac{(n/x)^{\frac{1}{2}}}{\frac{1}{4}\ln n}\text dx\right)\\
&= \mathcal O\left(\frac{n^{\frac{3}{4}}}{\ln n}\right).
\end{aligned}
\]

为了方便理解,\(\log\) 都确切地写作 \(\ln\) 啦。

  这里有个疑点,为什么 \(F\) 的递推形式转移不影响复杂度。没找到资料 qwq。

  UPD: 悟了,前常数个 \(j\) 直接放成 \(O\left(\frac{n^{\frac{3}{4}}}{\ln n}\right)\),直到后面的 \(j\) 全部放成 \(\ln\) 倍的某一复杂度都比不过,就能证了。

  对于空间复杂度,滚动 \(i\),\(F(m,i)\) 和 \(G(m,i)\) 都只需要记录 \(\mathcal O(\sqrt n)\) 个 \(n/i\) 的点值。

  注意:为保证复杂度,不能访问任何非法状态,否则退化成 \(\mathcal O(n^{1-\epsilon})\)。

Note -「Min_25 筛」“你就说这素因子你要不要吧?你要不要?”的更多相关文章

  1. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

  2. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  3. Note -「动态 DP」学习笔记

    目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...

  4. Note -「单位根反演」学习笔记

    \(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的 ...

  5. LOJ3069. 「2019 集训队互测 Day 1」整点计数(min_25筛)

    题目链接 https://loj.ac/problem/3069 题解 复数真神奇. 一句话题意:令 \(f(x)\) 表示以原点 \((0, 0)\) 为圆心,半径为 \(x\) 的圆上的整点数量, ...

  6. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

  7. 「NOI2016」循环之美(小性质+min_25筛)

    传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是 ...

  8. Solution -「洛谷 P5325」Min_25 筛

    \(\mathcal{Description}\)   Link.   对于积性函数 \(f(x)\),有 \(f(p^k)=p^k(p^k-1)~(p\in\mathbb P,k\in\mathbb ...

  9. 「学习笔记」Min25筛

    「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}​\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...

随机推荐

  1. 基于ShardingJDBC的分库分表及读写分离整理

    ShardingJDBC的核心流程主要分成六个步骤,分别是:SQL解析->SQL优化->SQL路由->SQL改写->SQL执行->结果归并,流程图如下: sharding ...

  2. vue3.0+vite+ts项目搭建-postcss-pxtorem 实现移动自适应(五)

    这里不考虑大屏,所以不做amfe-flexible的配置 首先是安装依赖 yarn add postcss-loader postcss-pxtorem -D yarn add autoprefixe ...

  3. css编写规则BEM

    简单来说,格式如下: .block { /* styles */ } .block__element { /* styles */ } .block--modifier { /* styles */ ...

  4. dart系列之:手写Library,Library编写最佳实践

    目录 简介 使用part和part of src中的文件 package中的lib文件 总结 简介 Library是dart用来组织代码的一种非常有用的方式,通过定义不同的Library,可以将非常有 ...

  5. kafka学习笔记(四)kafka的日志模块

    概述 日志段及其相关代码是 Kafka 服务器源码中最为重要的组件代码之一.你可能会非常关心,在 Kafka 中,消息是如何被保存和组织在一起的.毕竟,不管是学习任何消息引擎,弄明白消息建模方式都是首 ...

  6. hisql orm update表数据更新文档

    更新 HiSql数据更新 HiSql 提供了好几种数据更新的方式下面一一介绍一下 如果你的表中增加了这四个字段 字段 描述 类型 CreateTime 创建时间 DateTime CreateName ...

  7. [WPF] 用 Effect 实现线条光影效果

    1. 前言 几个月前 ChokCoco 大佬发布了一篇文章: CSS 奇技淫巧 | 妙用 drop-shadow 实现线条光影效果 在文章里实现了一个发光的心形线条互相追逐的效果: 现在正好有空就试试 ...

  8. day3 创建数组并完成对数组的操作

    1.实现函数action()初始化数据全0的操作 2.实现函数assignment()利用指针给数组赋值0~9 3.实现函数print()打印数组的每个函数 4.实现函数reverse()完成对数组的 ...

  9. conda : 无法将“conda”项识别为 cmdlet、函数、脚本文件或可运行程序的名称

    conda : 无法将"conda"项识别为 cmdlet.函数.脚本文件或可运行程序的名称.请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次. 解决办法: 没有添加系 ...

  10. 【刷题-LeetCode】164 Maximum Gap

    Maximum Gap Given an unsorted array, find the maximum difference between the successive elements in ...