【XSY2771】城市 分治
题目描述
一个平原上有\(n\)个城市,第\(i\)个城市在点\((\cos \frac{2i\pi}{n},\sin \frac{2i\pi}{n})\)上。
每个城市和最近的两个城市有一条直线段的路。
此外,还有\(n-3\)条路,这些路不会和原有的路重合,这些路之间也不会相交。
通过每条道路均要花费\(1\)的时间。
每次给你两个城市,问你从一个城市到另一个城市最快要多久。
\(n\leq 100000\)
题解
先把图画出来,容易发现这是一个平面图,且这个图的对偶图是一棵树,每个点的度数不超过\(3\)。
那么我们可以对这棵树分治(点分治边分治都可以)。
每次选择一条边,对于每个询问,这个询问的最短路径可以经过这条边的两个端点,也可以不经过。
那么可以从这条边的两个端点开始BFS,并更新答案。
对于一个询问,如果这个询问的两个点不在这条边的同一侧,就可以把这个询问扔掉了,否则递归下去处理。
时间复杂度:\(O(n\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdlib>
#include<utility>
#include<vector>
#include<queue>
using namespace std;typedef long long ll;typedef pair<int,int> pii;void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}int rd(){int s,c;while((c=getchar())<'0'||c>'9');s=c-'0';while((c=getchar())>='0'&&c<='9')s=s*10+c-'0';return s;}
vector<int> g[100010];
int e[100010][3];
int qu[100010][3];
int c[100010];
int ti;
int tot;
int b[100010];
queue<int> q;
int num[100010];
int ans[100010];
int d[100010];
void bfs(int x)
{
d[x]=0;
q.push(x);
ti++;
b[x]=ti;
while(!q.empty())
{
x=q.front();
q.pop();
for(auto v:g[x])
if(c[v]==tot&&b[v]!=ti)
{
d[v]=d[x]+1;
b[v]=ti;
q.push(v);
}
}
}
int cnt;
int dist(int l,int r)
{
if(r<l)
r+=cnt;
return r-l+1;
}
int belong(int l,int r,int x)
{
if(l>r)
r+=cnt;
if(x<l)
x+=cnt;
return x<=r;
}
int belong2(int l,int r,int x)
{
if(l>r)
r+=cnt;
if(x<=l)
x+=cnt;
return x<r;
}
void solve(vector<int> &id,vector<int> &qid)
{
if(!qid.size())
return;
if(id.size()<=1)
return;
tot++;
cnt=0;
for(auto v:id)
{
c[v]=tot;
num[v]=++cnt;
}
int s=0x7fffffff,x1,x2;
for(auto v1:id)
for(auto v2:g[v1])
if(c[v2]==tot)
{
int v=max(dist(num[v1],num[v2]),dist(num[v2],num[v1]));
if(v<s)
{
s=v;
x1=v1;
x2=v2;
}
}
bfs(x1);
for(auto v:qid)
ans[v]=min(ans[v],d[qu[v][1]]+d[qu[v][2]]);
bfs(x2);
for(auto v:qid)
ans[v]=min(ans[v],d[qu[v][1]]+d[qu[v][2]]);
if(id.size()<=3)
return;
vector<int> id1,id2,qid1,qid2;
for(auto v:id)
{
if(belong(num[x1],num[x2],num[v]))
id1.push_back(v);
if(belong(num[x2],num[x1],num[v]))
id2.push_back(v);
}
for(auto v:qid)
{
if(belong2(num[x1],num[x2],num[qu[v][1]])&&belong2(num[x1],num[x2],num[qu[v][2]]))
qid1.push_back(v);
if(belong2(num[x2],num[x1],num[qu[v][1]])&&belong2(num[x2],num[x1],num[qu[v][2]]))
qid2.push_back(v);
}
solve(id1,qid1);
solve(id2,qid2);
}
int n,m;
int main()
{
open("b");
scanf("%d",&n);
int x,y;
for(int i=1;i<=n-3;i++)
{
scanf("%d%d",&x,&y);
x++;
y++;
g[x].push_back(y);
g[y].push_back(x);
e[i][1]=x;
e[i][2]=y;
}
for(int i=1;i<=n;i++)
{
g[i].push_back(i%n+1);
g[i%n+1].push_back(i);
}
vector<int> id,qid;
for(int i=1;i<=n;i++)
id.push_back(i);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&qu[i][1],&qu[i][2]);
qu[i][1]++;
qu[i][2]++;
qid.push_back(i);
if(qu[i][1]==qu[i][2])
ans[i]=0;
else
ans[i]=0x7fffffff;
}
solve(id,qid);
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}
【XSY2771】城市 分治的更多相关文章
- 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...
- BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...
- 【HNOI2010】城市建设(对时间分治 & Kruskal)
Description \(n\) 个点 \(m\) 条边的带边权无向图.\(q\) 次操作,每次修改一条边的权值. 求每次修改后的最小生成树的边权和. Hint \(1\le n\le 2\time ...
- BZOJ2001 HNOI2010城市建设(线段树分治+LCT)
一个很显然的思路是把边按时间段拆开线段树分治一下,用lct维护MST.理论上复杂度是O((M+Q)logNlogQ),实际常数爆炸T成狗.正解写不动了. #include<iostream> ...
- 【CDQ分治】[HNOI2010]城市建设
题目链接 线段树分治+LCT只有80 然后就有了CDQ分治的做法 把不可能在生成树里的扔到后面 把一定在生成树里的扔到并查集里存起来 分治到l=r,修改边权,跑个kruskal就行了 由于要支持撤销, ...
- BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】
题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...
- bzoj 2001 CITY 城市建设 cdq分治
题目传送门 题解: 对整个修改的区间进行分治.对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了. ...
- P3206 [HNOI2010]城市建设 [线段树分治+LCT维护动态MST]
Problem 这题呢 就边权会在某一时刻变掉-众所周知LCT不支持删边的qwq- 所以考虑线段树分治- 直接码一发 如果 R+1 这个时间修改 那就当做 [L,R] 插入了一条边- 然后删的边和加的 ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
随机推荐
- Makefile有三个非常有用的变量。分别是$@,$^,$
原文地址:https://blog.csdn.net/u013774102/article/details/79043559 假设我们有下面这样的一个程序,源代码如下: /* main.c */ #i ...
- import导入模块,==和is,浅拷贝和深拷贝,进制转换,位运算,私有化,property装饰器
'''import导入模块'''import sysprint(sys.path) sys.path.append('D://ASoft/Python/PycharmProjects')import ...
- vue双向数据绑定的简单实现
vue双向数据绑定的简单实现 参考教程:链接 <!DOCTYPE html> <html lang="en"> <head> <meta ...
- IdentityServer4【Topic】之定义客户端
Defining Clients 定义客户端 客户端表示哪些可以从你的IdentityServer拿到token的应用. 除了一些可能会变化的细节之外,通常情况下你需要为一个客户端定义如下通用的设置: ...
- if判断条件注意!!!
if(condition){ console.log(condition为true才执行): } 实际上会对condition执行Boolean()转型函数,将其转换成布尔值
- ASP.NET Web.config文件的配置(Configuration API)
本次我们讨论主要聚焦在以下Web.config配置文件的设置值的读取. 1.<connectionString />连接字符串的读取. 2.<appSettings />应用程 ...
- python设计模式第五天【单例模式】
1. 定义 一个类只有一个实例,提供访问该实例的全局方法 2.应用场景 (1)多线程之间共享对象资源 (2)整个程序空间中的全局变量,共享资源 (3)大规模程序的节省创建对象的时间 3.代码实现(使用 ...
- git的简单使用(一些小操作,持续更新)
第一次使用git的过程记录 参考了两个文章 菜鸟教程-git简明指南 阮一峰-常用git命令清单 git的几个工作区(此处参考了上面的两篇介绍) 简单步骤如下 git init 在当前目录建立工作区 ...
- dbexpress连接mysql提示Operation not allowed on a unidirectional dataset
最近刚接触delphi,在了解到dbExpress连接mysql的时候,出现了一些问题,特记录下 我遇到的问题有两个 1. TDBGrid --DataSet=TDataSource1 TDataSo ...
- 排列组合n选m算法
找10组合算法,非递归 http://blog.csdn.net/sdhongjun/article/details/51475302