输入 N 和 M (2<=N<=1000000000, 1<=M<=N), 
找出所有满足1<=X<=N 且 gcd(X,N)>=M 的 X 的数量.

Input第一行输入样例数T (T <= 100)
每个样例输入两个整数N , M。 (2<=N<=1000000000, 1<=M<=N)Output对于每组样例,输出一个整数,表示满足条件的X的数量。Sample Input

3
1 1
10 2
10000 72

Sample Output

1
6
260 解析:
  借鉴uva 11426的思想 但范围太大 用时间换空间 直接求欧拉 再剪枝一下 就好了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int g, m;
int ans;
int getphi(int n)
{
int ret = n;
for(int i = ; i <= sqrt(n + 0.5); i++)
{
if(n % i == )
{
ret = ret / i * (i - );
while(n % i == ) n /= i;
}
}
if(n > )
ret = ret / n * (n - );
return ret;
} int main()
{
int T;
rd(T);
while(T--)
{
int sum = ;
rd(g), rd(m);
int s = sqrt(g + 0.5);
for(int i = ; i <= s; i++)
if(g % i == )
{
if(i >= m) sum += getphi(g / i);
if(g / i >= m) sum += getphi(i);
}
if(g != && s * s == g && s >= m) sum -= getphi(s);
pd(sum + );
} return ;
}

GCD HDU - 2588的更多相关文章

  1. E - GCD HDU - 2588

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the ...

  2. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  3. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

  4. HDU 2588 GCD 【Euler + 暴力技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  5. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  6. HDU 2588 GCD

    题目大意:给定N,M, 求1<=X<=N 且gcd(X,N)>=M的个数. 题解:首先,我们求出数字N的约数,保存在约数表中,然后,对于大于等于M的约数p[i],求出Euler(n/ ...

  7. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. HDU 2588 GCD &amp;&amp; GCD问题总结

    GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. 微信小程序页面跳转方法总结

    微信小程序页面跳转目前有以下方法(不全面的欢迎补充): 1. 利用小程序提供的 API 跳转: // 保留当前页面,跳转到应用内的某个页面,使用wx.navigateBack可以返回到原页面.// 注 ...

  2. P1525 关押罪犯

    基础并查集-- #include<iostream> #include<string.h> #include<algorithm> #include<stdi ...

  3. hdu6249 区间动态规划

    题目链接 题意:给出一些区间,求选k个区间能覆盖的最多点的数量 思路:定义dp[i][j]为前i个点取j个区间的最大值.dp[i][j]可以转移到dp[i+1][j+1]和以i+1为起点的区间终点 具 ...

  4. 阿里字体css代码引入方法

    1.第一步,选择自己想要的图标字体,添加入库. 2.选择下载代码. 3.我们可以发现,有如下的代码被下载下来了. 4.我们选择iconfont.css放到自己的文件夹中. 5.然后我们根据下载下来ht ...

  5. ES5中文分词(IK)

    ElasticSearch5中文分词(IK) ElasticSearch安装 官网:https://www.elastic.co 1.ElasticSearch安装 1.1.下载安装公共密钥 rpm ...

  6. snappy

    Snappy 是一个 C++ 的用来压缩和解压缩的开发包.其目标不是最大限度压缩或者兼容其他压缩格式,而是旨在提供高速压缩速度和合理的压缩率.Snappy 比 zlib 更快,但文件相对要大 % 到 ...

  7. 项目集成自动分词系统ansj,实现自定义词库

    一,分词系统地址:https://github.com/NLPchina/ansj_seg 二,为什么选择ansj? 1.项目需求: 我们平台要做手机售后的舆情分析,即对购买手机的用户的评论进行分析. ...

  8. Memcached 集群架构与memcached-session-manager

    Memcached 集群架构方面的问题_知识库_博客园https://kb.cnblogs.com/page/69074/ memcached-session-manager配置 - 学习中间件调优管 ...

  9. .net WCF WF4.5

    花了两天时间学习使用WF,把一些遇到的问题记录下来,使用的环境是VS2017,网上的资料普遍太老了 需要注意,如果使用多项目同时启动的方式需要把WCF调整到WF启动顺序之上 1.怎么使用代码活动 新建 ...

  10. Chrome 使用绿色版实现同一个机器 打开多个不同的chrome版本

    1. 之前找了一个方案能够实现 多个chrome版本的 同时安装 但是发现不是很好. 2. 最近的一个办法 就是使用chrome的绿色版来实现 3. 下载地址: https://www.chrome6 ...