输入 N 和 M (2<=N<=1000000000, 1<=M<=N), 
找出所有满足1<=X<=N 且 gcd(X,N)>=M 的 X 的数量.

Input第一行输入样例数T (T <= 100)
每个样例输入两个整数N , M。 (2<=N<=1000000000, 1<=M<=N)Output对于每组样例,输出一个整数,表示满足条件的X的数量。Sample Input

3
1 1
10 2
10000 72

Sample Output

1
6
260 解析:
  借鉴uva 11426的思想 但范围太大 用时间换空间 直接求欧拉 再剪枝一下 就好了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int g, m;
int ans;
int getphi(int n)
{
int ret = n;
for(int i = ; i <= sqrt(n + 0.5); i++)
{
if(n % i == )
{
ret = ret / i * (i - );
while(n % i == ) n /= i;
}
}
if(n > )
ret = ret / n * (n - );
return ret;
} int main()
{
int T;
rd(T);
while(T--)
{
int sum = ;
rd(g), rd(m);
int s = sqrt(g + 0.5);
for(int i = ; i <= s; i++)
if(g % i == )
{
if(i >= m) sum += getphi(g / i);
if(g / i >= m) sum += getphi(i);
}
if(g != && s * s == g && s >= m) sum -= getphi(s);
pd(sum + );
} return ;
}

GCD HDU - 2588的更多相关文章

  1. E - GCD HDU - 2588

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the ...

  2. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  3. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

  4. HDU 2588 GCD 【Euler + 暴力技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  5. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  6. HDU 2588 GCD

    题目大意:给定N,M, 求1<=X<=N 且gcd(X,N)>=M的个数. 题解:首先,我们求出数字N的约数,保存在约数表中,然后,对于大于等于M的约数p[i],求出Euler(n/ ...

  7. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. HDU 2588 GCD &amp;&amp; GCD问题总结

    GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. XenServer 5.5 断电重启虚拟机磁盘丢失的修复

    1.现象 公司云平台使用的是XenServer 5.5,版本比较老了.最近几天因为机房改造,导致云环境断电,重启之后发现有2台机器无法ping到,所以再次重启,登录修复网卡,最后发现无法用XenCen ...

  2. ajax成功后XML 解析错误:格式不佳

    就是Ajax发送请求后,意图回显数据时会出现这个错误,貌似chrome浏览器不会报用火狐能看到: 可能的原因有两个,就是后台应该返回一个json格式的字符串,但是你返回的是浏览器看不懂的,也就是返回格 ...

  3. eclipse、myeclipse写类时,自动生成注释

    在类的上边/**+enter自动生成注释. 设置方法:Window--Prefences--Java--Code Style--Code Templates--Comments--Types--Edi ...

  4. .net之httphandler小记

    本地调试代码遇到的一个问题,没有走URL路由器(UrlReWriter : IHttpHandlerFactory),于是网上科普了一下原理,主要有两点: 1.asp.net在处理http请求时,会由 ...

  5. 02-安装linux系统

    安装linux系统 需要准备的软件: 1.VMware-workstation-full-14.1.1.28517.exe 2.CentOS-6.5-x86_64-bin-DVD1.iso镜像文件 第 ...

  6. centos6 yum 安装memcached

    centos6 yum 安装memcached - 像块石头 - 博客园http://www.cnblogs.com/rockee/archive/2012/08/01/2619160.html yu ...

  7. asp.net core前后端分离

    陆陆续续的看了两个礼拜的前端知识,把vue+vue-router+axios的知识撸了一遍,本来想加个element-ui来实现一下前后端分离,实施的时候却遇到了很多的坑.我本身不在一个软件开发公司上 ...

  8. MySQL系列:视图基本操作(3)

    1. 视图简介 1.1 视图定义 视图是一种虚拟的表,是从数据库中一个或多个表中导出来的表. 视图可以从已存在的视图的基础上定义. 数据库中只存放视图的定义,并没有存放视图中的数据,数据存放在原来的表 ...

  9. Delphi处理数据网格DBGrid的编辑框 获取还没有提交到数据集的字段文本

    //fromhttp://kingron.myetang.com/zsfunc12.htm (*//标题:处理数据网格的编辑框说明:示例添加焦点颜色;获取还没有提交到数据集的字段文本设计:Zswang ...

  10. java 中 Math类

    package cn.liuliu.com; import java.math.BigDecimal; import java.math.BigInteger; /* * 一.Math类? * * 1 ...