损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵。

1、均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值。

在神经网络计算时,预测值要与真实值控制在同样的数据分布内,假设将预测值经过Sigmoid激活函数得到取值范围在0~1之间,那么真实值也归一化到0~1之间。

2、交叉熵:预测输入样本属于某一类的概率。

其中y代表真实值分类(0或1),a代表预测值,交叉熵值越小,预测结果越准。

3、损失函数的选取

损失函数的选取取决于输入标签数据的类型,如果输入的是实数、无界的值,损失函数使用平方差;如果输入标签是位矢量(分类标签),使用交叉熵会更合适。

4、Tensorflow常见的loss函数

  • 均值平方差
# logits代表标签值,outputs代表预测值
MSE = tf.reduce_mean(tf.pow(tf.sub(logits,outputs),2.0))
MSE = tf.reduce_mean(tf.square(logits-outputs))
  • 交叉熵:Sigmoid交叉熵、softmax交叉熵、Sparse交叉熵、加权Sigmoid交叉熵

第五节,损失函数:MSE和交叉熵的更多相关文章

  1. 关于交叉熵(cross entropy),你了解哪些

    二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值, ...

  2. 经典的损失函数:交叉熵和MSE

    经典的损失函数: ①交叉熵(分类问题):判断一个输出向量和期望向量有多接近.交叉熵刻画了两个概率分布之间的距离,他是分类问题中使用比较广泛的一种损失函数.概率分布刻画了不同事件发生的概率. 熵的定义: ...

  3. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  4. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  5. 理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用

    交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是R ...

  6. 深度学习原理与框架-神经网络结构与原理 1.得分函数 2.SVM损失函数 3.正则化惩罚项 4.softmax交叉熵损失函数 5. 最优化问题(前向传播) 6.batch_size(批量更新权重参数) 7.反向传播

    神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, ...

  7. 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵

    经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...

  8. TF Boys (TensorFlow Boys ) 养成记(五): CIFAR10 Model 和 TensorFlow 的四种交叉熵介绍

    有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...

  9. 【联系】二项分布的对数似然函数与交叉熵(cross entropy)损失函数

    1. 二项分布 二项分布也叫 0-1 分布,如随机变量 x 服从二项分布,关于参数 μ(0≤μ≤1),其值取 1 和取 0 的概率如下: {p(x=1|μ)=μp(x=0|μ)=1−μ 则在 x 上的 ...

随机推荐

  1. Python之偏函数

    学前知识储备: 函数在Python是第一类对象 (Python中一切皆对象). 第一类对象的特性: ----1.可以被引用 ----2.可以当做参数传入 ----3.可以当做函数返回值 ----4.可 ...

  2. Adobe Photoshop CC 2019 for Mac(介绍及下载)

    [Adobe Photoshop 简介] Photoshop CC 2019 for Mac 破解版专为所有设计人员而设计.从海报到包装,从普通的横幅到绚丽的网站,从令人难忘的徽标到吸引眼球的图标,P ...

  3. django_admin用法

    Django内置的admin Django内置的Admin是对于model中对应的数据表进行增删改查提供的组件,使用方式有: 依赖APP: django.contrib.auth django.con ...

  4. python自动化开发-[第二天]-基础数据类型与编码(续)

    今日简介: - 编码 - 进制转换 - 初识对象 - 基本的数据类型 - 整数 - 布尔值 - 字符串 - 列表 - 元祖 - 字典 - 集合 - range/enumcate 一.编码 encode ...

  5. python css盒子型 浮动

    ########################总结############### 块级标签能够嵌套某些块级标签和内敛标签 内敛标签不能块级标签,只能嵌套内敛标签 嵌套就是: <div> ...

  6. HDU 1017(** **)

    题意是给定 n,m,问有多少组(a,b)满足 0 < a < b < n 而且 (a ^ 2 + b ^ 2 + m) / ( a * b ) 是整数. 直接模拟即可. 代码如下: ...

  7. 【c++】编译器为我们实现了几个类成员函数?

    #include <cassert> #include <complex> #include <iostream> class Empty{}; Empty e; ...

  8. 指定so动态链接库连接器

    在学习x86_64汇编时, 发现一旦使用glibc库函数, 如printf时, 一般是需要使用为ld传递命令行参数-lc来动态连接libc.so的, 但是, 生成的可执行文件却无法运行: 气煞我也! ...

  9. [Linux] [JNI]

    使用 javah 生成头文件后, 编写c代码来实现其中声明的函数, 本文主要解决以下问题: (1) 如何生成动态链接库文件 使用如下格式的 gcc 命令可以将 C文件 编译为 .so 文件, 对于其依 ...

  10. 【noip 2016】提高组

    D1T1.玩具谜题 题目链接 直接模拟就好了……water. #include<cstdio> int n,m,a,s,ans; ];]; int main() { scanf(" ...