spark查看DF的partition数目及每个partition中的数据量【集群模式】
println("--------------------"+data.rdd.getNumPartitions) // 获取DF中partition的数目
val partitions = data.rdd.glom().collect() // 获取所有data下所有的partition,返回一个partition的集合
for(part <- partitions){
println(part.getClass.getName + "::::::::" + part.length) // 每个partition中的数据量
}
结果:
--------------------100
[Lorg.apache.spark.sql.Row;::::::::61516
[Lorg.apache.spark.sql.Row;::::::::61656
[Lorg.apache.spark.sql.Row;::::::::61991
[Lorg.apache.spark.sql.Row;::::::::61269
[Lorg.apache.spark.sql.Row;::::::::61654
[Lorg.apache.spark.sql.Row;::::::::61780
[Lorg.apache.spark.sql.Row;::::::::62059
[Lorg.apache.spark.sql.Row;::::::::61675
[Lorg.apache.spark.sql.Row;::::::::61339
[Lorg.apache.spark.sql.Row;::::::::61783
[Lorg.apache.spark.sql.Row;::::::::61620
[Lorg.apache.spark.sql.Row;::::::::61883
[Lorg.apache.spark.sql.Row;::::::::61631
[Lorg.apache.spark.sql.Row;::::::::61930
[Lorg.apache.spark.sql.Row;::::::::61451
[Lorg.apache.spark.sql.Row;::::::::61797
[Lorg.apache.spark.sql.Row;::::::::61367
[Lorg.apache.spark.sql.Row;::::::::61647
[Lorg.apache.spark.sql.Row;::::::::61488
[Lorg.apache.spark.sql.Row;::::::::61584
[Lorg.apache.spark.sql.Row;::::::::61733
[Lorg.apache.spark.sql.Row;::::::::61491
[Lorg.apache.spark.sql.Row;::::::::61809
[Lorg.apache.spark.sql.Row;::::::::61062
[Lorg.apache.spark.sql.Row;::::::::61658
[Lorg.apache.spark.sql.Row;::::::::61599
[Lorg.apache.spark.sql.Row;::::::::61911
[Lorg.apache.spark.sql.Row;::::::::61602
[Lorg.apache.spark.sql.Row;::::::::61348
[Lorg.apache.spark.sql.Row;::::::::61677
[Lorg.apache.spark.sql.Row;::::::::61722
[Lorg.apache.spark.sql.Row;::::::::61482
[Lorg.apache.spark.sql.Row;::::::::61714
[Lorg.apache.spark.sql.Row;::::::::61241
[Lorg.apache.spark.sql.Row;::::::::61737
[Lorg.apache.spark.sql.Row;::::::::62015
[Lorg.apache.spark.sql.Row;::::::::62062
[Lorg.apache.spark.sql.Row;::::::::61557
[Lorg.apache.spark.sql.Row;::::::::61607
[Lorg.apache.spark.sql.Row;::::::::61175
[Lorg.apache.spark.sql.Row;::::::::61653
[Lorg.apache.spark.sql.Row;::::::::61460
[Lorg.apache.spark.sql.Row;::::::::61705
[Lorg.apache.spark.sql.Row;::::::::61492
[Lorg.apache.spark.sql.Row;::::::::61340
[Lorg.apache.spark.sql.Row;::::::::61767
[Lorg.apache.spark.sql.Row;::::::::61756
[Lorg.apache.spark.sql.Row;::::::::61793
[Lorg.apache.spark.sql.Row;::::::::61417
[Lorg.apache.spark.sql.Row;::::::::61376
[Lorg.apache.spark.sql.Row;::::::::62039
[Lorg.apache.spark.sql.Row;::::::::61571
[Lorg.apache.spark.sql.Row;::::::::61849
[Lorg.apache.spark.sql.Row;::::::::61553
[Lorg.apache.spark.sql.Row;::::::::61612
[Lorg.apache.spark.sql.Row;::::::::61980
[Lorg.apache.spark.sql.Row;::::::::61714
[Lorg.apache.spark.sql.Row;::::::::62376
[Lorg.apache.spark.sql.Row;::::::::61884
[Lorg.apache.spark.sql.Row;::::::::61273
[Lorg.apache.spark.sql.Row;::::::::61669
[Lorg.apache.spark.sql.Row;::::::::61695
[Lorg.apache.spark.sql.Row;::::::::61515
[Lorg.apache.spark.sql.Row;::::::::61247
[Lorg.apache.spark.sql.Row;::::::::61909
[Lorg.apache.spark.sql.Row;::::::::61879
[Lorg.apache.spark.sql.Row;::::::::61913
[Lorg.apache.spark.sql.Row;::::::::61199
[Lorg.apache.spark.sql.Row;::::::::61678
[Lorg.apache.spark.sql.Row;::::::::61619
[Lorg.apache.spark.sql.Row;::::::::61909
[Lorg.apache.spark.sql.Row;::::::::61406
[Lorg.apache.spark.sql.Row;::::::::61775
[Lorg.apache.spark.sql.Row;::::::::61559
[Lorg.apache.spark.sql.Row;::::::::61773
[Lorg.apache.spark.sql.Row;::::::::61888
[Lorg.apache.spark.sql.Row;::::::::61634
[Lorg.apache.spark.sql.Row;::::::::61786
[Lorg.apache.spark.sql.Row;::::::::61666
[Lorg.apache.spark.sql.Row;::::::::61519
[Lorg.apache.spark.sql.Row;::::::::61563
[Lorg.apache.spark.sql.Row;::::::::61481
[Lorg.apache.spark.sql.Row;::::::::61295
[Lorg.apache.spark.sql.Row;::::::::61343
[Lorg.apache.spark.sql.Row;::::::::61750
[Lorg.apache.spark.sql.Row;::::::::61328
[Lorg.apache.spark.sql.Row;::::::::61650
[Lorg.apache.spark.sql.Row;::::::::61541
[Lorg.apache.spark.sql.Row;::::::::61397
[Lorg.apache.spark.sql.Row;::::::::61505
[Lorg.apache.spark.sql.Row;::::::::61761
[Lorg.apache.spark.sql.Row;::::::::61795
[Lorg.apache.spark.sql.Row;::::::::62291
[Lorg.apache.spark.sql.Row;::::::::61566
[Lorg.apache.spark.sql.Row;::::::::61213
[Lorg.apache.spark.sql.Row;::::::::62028
[Lorg.apache.spark.sql.Row;::::::::62634
[Lorg.apache.spark.sql.Row;::::::::61838
[Lorg.apache.spark.sql.Row;::::::::61243
[Lorg.apache.spark.sql.Row;::::::::61585
样例:
--------------------100
[Lorg.apache.spark.sql.Row;::::::::61516
[Lorg.apache.spark.sql.Row;::::::::61656
[Lorg.apache.spark.sql.Row;::::::::61991
[Lorg.apache.spark.sql.Row;::::::::61269
[Lorg.apache.spark.sql.Row;::::::::61654
[Lorg.apache.spark.sql.Row;::::::::61780
spark查看DF的partition数目及每个partition中的数据量【集群模式】的更多相关文章
- Spark集群模式&Spark程序提交
Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...
- 【待补充】Spark 集群模式 && Spark Job 部署模式
0. 说明 Spark 集群模式 && Spark Job 部署模式 1. Spark 集群模式 [ Local ] 使用一个 JVM 模拟 Spark 集群 [ Standalone ...
- Spark Tachyon编译部署(含单机和集群模式安装)
Tachyon编译部署 编译Tachyon 单机部署Tachyon 集群模式部署Tachyon 1.Tachyon编译部署 Tachyon目前的最新发布版为0.7.1,其官方网址为http://tac ...
- Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续)
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过 ...
- Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28 ...
- Spark集群模式概述
作者:foreyou出处:http://www.foreyou.net/2015/06/22/spark-cluster-mode-overview/声明:本文采用以下协议进行授权: 署名-非商用|C ...
- Apache Spark 2.2.0 中文文档 - 集群模式概述 | ApacheCN
集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组 ...
- Spark 官方文档(2)——集群模式
Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件.可以通过阅读应用提交文档了解如何在集群中提交应用. 组件 spark应用程序通过主程序的Sp ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
随机推荐
- MySQL数据库事务详解
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...
- 在vue中使用Autoprefixed
为了使我们的项目兼容各种浏览器,我们可能会在开发中写大量的前缀.即使有了IDE为我们提供了便捷的方式.但是仍然需要我们去花时间和精力.而这样会浪费我们很多的时间.为了在开发中提升团队的开发效率,并且同 ...
- thinkphp自动填充分析
thinkphp有一个自动填充字段的方法填充规则如下 array( array(完成字段1,完成规则,[完成条件,附加规则]), array(完成字段2,完成规则,[完成条件,附加规则]), .... ...
- Centos-7修改yum源为国内的yum源
以centos7为例 ,以 修改为阿里的yum源 1. 备份本地yum源 [root@localhost yum.repos.d]# cp CentOS-Base.repo CentOS-Base.r ...
- 浅谈SpringAOP
0. 写在最前面 之前实习天天在写业务,其中有一个业务是非常的复杂,涉及到了特别多的表.最后测下来,一个接口的时间,竟然要5s多. 当时想写一个AOP,来计算处理接口花费多长时间,也就是在业务逻辑的前 ...
- SpringBoot学习(八)-->SpringBoot之过滤器、监听器
本文将直接使用@WebFilter和@WebListener的方式,完成一个Filter 和一个 Listener. 过滤器(Filter)和 监听器(Listener)的注册方法和 Servlet ...
- 深入理解JAVA中的NIO
前言: 传统的 IO 流还是有很多缺陷的,尤其它的阻塞性加上磁盘读写本来就慢,会导致 CPU 使用效率大大降低. 所以,jdk 1.4 发布了 NIO 包,NIO 的文件读写设计颠覆了传统 IO 的设 ...
- 6.3 OrderBy 优化
1. 创建实例 create table tblA( age int, birth TIMESTAMP not null ); insert into tblA(age,birth) values(2 ...
- Field 'id' doesn't have a default value错误解决方法
Field 'id' doesn't have a default value 错误提示. 主键类型获取方式为"native"由数据库生成指定. 检查发现数据库中已存在Employ ...
- python中的property属性
目录 1. 什么是property属性 2. 简单的实例 3. property属性的有两种方式 3.1 装饰器方式 3.2 类属性方式,创建值为property对象的类属性 4. property属 ...