spark查看DF的partition数目及每个partition中的数据量【集群模式】
println("--------------------"+data.rdd.getNumPartitions) // 获取DF中partition的数目
val partitions = data.rdd.glom().collect() // 获取所有data下所有的partition,返回一个partition的集合
for(part <- partitions){
println(part.getClass.getName + "::::::::" + part.length) // 每个partition中的数据量
}
结果:
--------------------100
[Lorg.apache.spark.sql.Row;::::::::61516
[Lorg.apache.spark.sql.Row;::::::::61656
[Lorg.apache.spark.sql.Row;::::::::61991
[Lorg.apache.spark.sql.Row;::::::::61269
[Lorg.apache.spark.sql.Row;::::::::61654
[Lorg.apache.spark.sql.Row;::::::::61780
[Lorg.apache.spark.sql.Row;::::::::62059
[Lorg.apache.spark.sql.Row;::::::::61675
[Lorg.apache.spark.sql.Row;::::::::61339
[Lorg.apache.spark.sql.Row;::::::::61783
[Lorg.apache.spark.sql.Row;::::::::61620
[Lorg.apache.spark.sql.Row;::::::::61883
[Lorg.apache.spark.sql.Row;::::::::61631
[Lorg.apache.spark.sql.Row;::::::::61930
[Lorg.apache.spark.sql.Row;::::::::61451
[Lorg.apache.spark.sql.Row;::::::::61797
[Lorg.apache.spark.sql.Row;::::::::61367
[Lorg.apache.spark.sql.Row;::::::::61647
[Lorg.apache.spark.sql.Row;::::::::61488
[Lorg.apache.spark.sql.Row;::::::::61584
[Lorg.apache.spark.sql.Row;::::::::61733
[Lorg.apache.spark.sql.Row;::::::::61491
[Lorg.apache.spark.sql.Row;::::::::61809
[Lorg.apache.spark.sql.Row;::::::::61062
[Lorg.apache.spark.sql.Row;::::::::61658
[Lorg.apache.spark.sql.Row;::::::::61599
[Lorg.apache.spark.sql.Row;::::::::61911
[Lorg.apache.spark.sql.Row;::::::::61602
[Lorg.apache.spark.sql.Row;::::::::61348
[Lorg.apache.spark.sql.Row;::::::::61677
[Lorg.apache.spark.sql.Row;::::::::61722
[Lorg.apache.spark.sql.Row;::::::::61482
[Lorg.apache.spark.sql.Row;::::::::61714
[Lorg.apache.spark.sql.Row;::::::::61241
[Lorg.apache.spark.sql.Row;::::::::61737
[Lorg.apache.spark.sql.Row;::::::::62015
[Lorg.apache.spark.sql.Row;::::::::62062
[Lorg.apache.spark.sql.Row;::::::::61557
[Lorg.apache.spark.sql.Row;::::::::61607
[Lorg.apache.spark.sql.Row;::::::::61175
[Lorg.apache.spark.sql.Row;::::::::61653
[Lorg.apache.spark.sql.Row;::::::::61460
[Lorg.apache.spark.sql.Row;::::::::61705
[Lorg.apache.spark.sql.Row;::::::::61492
[Lorg.apache.spark.sql.Row;::::::::61340
[Lorg.apache.spark.sql.Row;::::::::61767
[Lorg.apache.spark.sql.Row;::::::::61756
[Lorg.apache.spark.sql.Row;::::::::61793
[Lorg.apache.spark.sql.Row;::::::::61417
[Lorg.apache.spark.sql.Row;::::::::61376
[Lorg.apache.spark.sql.Row;::::::::62039
[Lorg.apache.spark.sql.Row;::::::::61571
[Lorg.apache.spark.sql.Row;::::::::61849
[Lorg.apache.spark.sql.Row;::::::::61553
[Lorg.apache.spark.sql.Row;::::::::61612
[Lorg.apache.spark.sql.Row;::::::::61980
[Lorg.apache.spark.sql.Row;::::::::61714
[Lorg.apache.spark.sql.Row;::::::::62376
[Lorg.apache.spark.sql.Row;::::::::61884
[Lorg.apache.spark.sql.Row;::::::::61273
[Lorg.apache.spark.sql.Row;::::::::61669
[Lorg.apache.spark.sql.Row;::::::::61695
[Lorg.apache.spark.sql.Row;::::::::61515
[Lorg.apache.spark.sql.Row;::::::::61247
[Lorg.apache.spark.sql.Row;::::::::61909
[Lorg.apache.spark.sql.Row;::::::::61879
[Lorg.apache.spark.sql.Row;::::::::61913
[Lorg.apache.spark.sql.Row;::::::::61199
[Lorg.apache.spark.sql.Row;::::::::61678
[Lorg.apache.spark.sql.Row;::::::::61619
[Lorg.apache.spark.sql.Row;::::::::61909
[Lorg.apache.spark.sql.Row;::::::::61406
[Lorg.apache.spark.sql.Row;::::::::61775
[Lorg.apache.spark.sql.Row;::::::::61559
[Lorg.apache.spark.sql.Row;::::::::61773
[Lorg.apache.spark.sql.Row;::::::::61888
[Lorg.apache.spark.sql.Row;::::::::61634
[Lorg.apache.spark.sql.Row;::::::::61786
[Lorg.apache.spark.sql.Row;::::::::61666
[Lorg.apache.spark.sql.Row;::::::::61519
[Lorg.apache.spark.sql.Row;::::::::61563
[Lorg.apache.spark.sql.Row;::::::::61481
[Lorg.apache.spark.sql.Row;::::::::61295
[Lorg.apache.spark.sql.Row;::::::::61343
[Lorg.apache.spark.sql.Row;::::::::61750
[Lorg.apache.spark.sql.Row;::::::::61328
[Lorg.apache.spark.sql.Row;::::::::61650
[Lorg.apache.spark.sql.Row;::::::::61541
[Lorg.apache.spark.sql.Row;::::::::61397
[Lorg.apache.spark.sql.Row;::::::::61505
[Lorg.apache.spark.sql.Row;::::::::61761
[Lorg.apache.spark.sql.Row;::::::::61795
[Lorg.apache.spark.sql.Row;::::::::62291
[Lorg.apache.spark.sql.Row;::::::::61566
[Lorg.apache.spark.sql.Row;::::::::61213
[Lorg.apache.spark.sql.Row;::::::::62028
[Lorg.apache.spark.sql.Row;::::::::62634
[Lorg.apache.spark.sql.Row;::::::::61838
[Lorg.apache.spark.sql.Row;::::::::61243
[Lorg.apache.spark.sql.Row;::::::::61585
样例:
--------------------100
[Lorg.apache.spark.sql.Row;::::::::61516
[Lorg.apache.spark.sql.Row;::::::::61656
[Lorg.apache.spark.sql.Row;::::::::61991
[Lorg.apache.spark.sql.Row;::::::::61269
[Lorg.apache.spark.sql.Row;::::::::61654
[Lorg.apache.spark.sql.Row;::::::::61780
spark查看DF的partition数目及每个partition中的数据量【集群模式】的更多相关文章
- Spark集群模式&Spark程序提交
Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...
- 【待补充】Spark 集群模式 && Spark Job 部署模式
0. 说明 Spark 集群模式 && Spark Job 部署模式 1. Spark 集群模式 [ Local ] 使用一个 JVM 模拟 Spark 集群 [ Standalone ...
- Spark Tachyon编译部署(含单机和集群模式安装)
Tachyon编译部署 编译Tachyon 单机部署Tachyon 集群模式部署Tachyon 1.Tachyon编译部署 Tachyon目前的最新发布版为0.7.1,其官方网址为http://tac ...
- Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续)
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过 ...
- Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28 ...
- Spark集群模式概述
作者:foreyou出处:http://www.foreyou.net/2015/06/22/spark-cluster-mode-overview/声明:本文采用以下协议进行授权: 署名-非商用|C ...
- Apache Spark 2.2.0 中文文档 - 集群模式概述 | ApacheCN
集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组 ...
- Spark 官方文档(2)——集群模式
Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件.可以通过阅读应用提交文档了解如何在集群中提交应用. 组件 spark应用程序通过主程序的Sp ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
随机推荐
- iOS逆向开发(0):修改二进制代码与重签名 | hopper | codesigh
小白:小程,你知道有些iOS程序是没人性的吗?老是不按我的意愿来运行! 小程:我怎么知道你的意愿就是有人性的? 本文解决一个问题:修改别人的二进制程序并运行起来. 让别人的程序按你的意愿来运行,文明一 ...
- 基于vue与vux做的可滑动tab组件(附源码)
背景 前不久,刚完成了一个商品列表+购物车功能的页面,因为一级商品分类在顶部tab中显示,可滑动,间距可定制,如下图所示: 定制的tab需求如下: 1. 每个tab-item的间距是相同的,可定制 2 ...
- 【Javascript系列】变量作用域
问题描述 本篇文章主要讲解javascript变量及其作用域. 1 内容区 在js中,变量大致可分为全局变量(全局作用域)和局部变量(局部作用域): 用关键字var定义变量(全局变量,可以省略va ...
- YTKNetwork网络封装
本篇是答应在端午写iOS网络-四篇源码解析以及封装的最后一篇,是针对上一篇YTKNetwork源码解析后的一次封装,也是自己实际项目中所使用过的.在对YTKNetwork封装的时候,还是需要对YTKN ...
- 【转载】C#生成图片的缩略图
图片处理是C#程序开发中时常会涉及到的一个业务,除了图像的上传.保存以及下载等功能外,根据上传的图片生成一个缩略图也是常见业务,在C#语言中,可以通过Image类提供的相关方法对图片进行操作,如指定宽 ...
- C# Redis安装 使用教程
前言:lz自打工作以来第一次遇到电脑问题需要重装系统,全盘格式化.打击是沉痛的.特别伤. 然后需要重新在本地部署 redis.这是写这篇博客的原因.希望对大家有所帮助,安装资源和引用DLL可以引用 ...
- 解决命名空间“System.Web.Mvc”中不存在类型或命名空间名称“Ajax”(是否缺少程序集引用?)
解决命名空间“System.Web.Mvc”中不存在类型或命名空间名称“Ajax”(是否缺少程序集引用?) 1.右击引用中的System.Web.MVC,点击“属性” 把"复制本地" ...
- mysql写注释的几种方法
MySQL的注释风格总的来说有三种.它们分别是 1.单行注释可以用"#" select 1 as cname; #this is a comment +-------+ | cna ...
- [PHP] 算法-选择排序的PHP实现
选择排序: 1.数组分成前后两个部分,前部分是排序的,后部分是无序的 2.两层循环,先假定当前循环的第一个索引为最小值,内部循环找比该索引还小的值,找到交换 for i;i<len;i++ mi ...
- php 函数小技巧(一)
密码加密与验证 password_hash — 创建密码的哈希(hash) string password_hash ( string $password , integer $algo [, arr ...