Problem Description

有一个大小是 2 x n 的网格,现在需要用2种规格的骨牌铺满,骨牌规格分别是 2 x 1 和 2 x 2,请计算一共有多少种铺设的方法。

Input

输入的第一行包含一个正整数T(T<=20),表示一共有 T组数据,接着是T行数据,每行包含一个正整数N(N<=30),表示网格的大小是2行N列。

Output

输出一共有多少种铺设的方法,每组数据的输出占一行。

Sample Input

3
2
8
12

Sample Output

3
171
2731

Source

《ACM程序设计》短学期考试_软件工程及其他专业


思路

典型的铺骨牌题目,可参考(https://www.cnblogs.com/MartinLwx/p/9769122.html)

递推式:\(f[i] = f[i-1] + 2*f[i-2]\)

初始条件:\(f[1]=1,f[2]=3\)

代码

#include<bits/stdc++.h>
using namespace std;
__int64 f[31];
int main()
{
int t; f[1] = 1; f[2] = 3;
for(int i=3;i<=30;i++)
f[i] = f[i-1] + 2*f[i-2]; cin >> t;
while(t--)
{
int tmp;
cin >> tmp;
cout << f[tmp] << endl;
}
return 0;
}

Hdoj 2501.Tiling_easy version 题解的更多相关文章

  1. HDOJ.2501 Tiling_easy version

    Tiling_easy version Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...

  2. hdu 2501 Tiling_easy version 递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2501 题目分析:已知有2*1,2*2,两种型号的瓷砖,要求铺满2*n的格子有多少种方法.可以考虑最左边 ...

  3. HDU 2501 Tiling_easy version(简单递推)

    Tiling_easy version Problem Description 有一个大小是 2 x n 的网格,现在需要用2种规格的骨牌铺满,骨牌规格分别是 2 x 1 和 2 x 2,请计算一共有 ...

  4. HDU 2501 Tiling_easy version

    递推式:f[n]=2*f[n-2]+f[n-1] #include <cstdio> #include <iostream> using namespace std; ]; i ...

  5. Tiling_easy version(填2 x N的格子的种类)

    E - Tiling_easy version 题目大意: 有一个大小是 2 x n 的网格,现在需要用2种规格的骨牌铺满,骨牌规格分别是 2 x 1 和 2 x 2,请计算一共有多少种铺设的方法. ...

  6. Tiling_easy version

    Tiling_easy version 思路:关于dp这种东西,有一点必须要想明白,就是状态与状态之间的转换关系,就比如说要求5个骨牌的方案数,因为有两种骨牌,那么可以用dp[3]+两个横着的骨牌或者 ...

  7. Hdoj 1050.Moving Tables 题解

    Problem Description The famous ACM (Advanced Computer Maker) Company has rented a floor of a buildin ...

  8. Codeforces 1196D2 RGB Substring (Hard version) 题解

    题面 \(q\) 个询问,每个询问给出一个字符串 \(s\),要你在 \(s\) 中用最小替换得到无穷字符串 RGBRGBRGB... 的长度为定值 \(k\) 的子串. 题解 一眼看过去可能是编辑距 ...

  9. CF1157C1-Increasing Subsequence (easy version)题解

    原题地址 题目大意:

随机推荐

  1. 提高工作效率-window热键

    一.虚拟桌面 Ctrl win D          创建另一个桌面 Ctrl win  左右箭头     来回切换桌面 Ctrl win  F4     关闭当前虚拟桌面 二.窗口 win  M  ...

  2. Redis启动及密码修改

    .cmd启动Redis: redis-server.exe redis.windows.conf #注意指定配置文件来启动 .cmd登陆redis redis-cli.exe -h -a .修改密码 ...

  3. 【Python3练习题 017】 两个乒乓球队进行比赛,各出三人。甲队为a,b,c三人,乙队为x,y,z三人。已抽签决定比赛名单。有人向队员打听比赛的名单。a说他不和x比,c说他不和x,z比。请编程序找出三队赛手的名单。

    import itertools   for i in itertools.permutations('xyz'):     if i[0] != 'x' and i[2] != 'x' and i[ ...

  4. CentOS7安装Jenkins,使用war方式直接运行或用yum方式安装运行

    jenkins最简单的安装方式呢,就是直接去官网下载jenkins的war包,把war丢到tomcat里运行,直接就能打开了. Jenkins官网:https://jenkins.io/downloa ...

  5. unsupported time zone specified undefined

    unsupported time zone specified undefined   出现了这个问题,莫名其妙的,上次被我下回去了,真的是下回去的,我一去查看,坐在电脑前面问题就不见了…… 具体出现 ...

  6. SpringBoot 中 JPA 的使用

    详细连接 简书https://www.jianshu.com/p/c14640b63653 新建项目,增加依赖 在 Intellij IDEA 里面新建一个空的 SpringBoot 项目.具体步骤参 ...

  7. git遇到的问题 .Git: There is no tracking information for the current branch.

    1.Git: There is no tracking information for the current branch. 在执行git pull的时候,提示当前branch没有跟踪信息: git ...

  8. java中的a++与++a的区别

    ++a:如果++在前就会先把a+1. a++:如果++在后就会先a然后在执行++的操作.代码: int a = 1; System.out.pritln(++a); //输出2 int s = 1; ...

  9. RBAC模型

    1.RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地说,一个用户拥有若干角色,每一个角色拥有若干权限.这样,就构造成“用户-角 ...

  10. Bootstrap之表格、表单应用

    代码: <!DOCTYPE html> <html lang="en" xmlns:th="http://www.w3.org/1999/xhtml&q ...