Codeforces | CF1010C 【Border】
这道题大致题意是给定\(n\)个十进制整数和一个进制数\(k\),可以用无数多个给定的十进制整数,问这些十进制整数的和在模k意义下有多少种不同的结果(\(k\)进制下整数的最后一位就是这个数模\(k\)的余数)。
这明显是个数学题(但是不会做又有什么办法[逃]),既然是求模k意义下的可能结果,我们可以让所有数对k取模,这样可以得到末位数字。但是对于蒟蒻来说这有什么用呢(反正本蒟蒻取模之后也还是看不出来)。其实这道题并不是要取模,也不是要用进制,而是在十进制下求最大公约数(下面详细解释)。
众所周知有一道(毒瘤)题叫做小凯的疑惑,这道题的结论是对于互质的两个数\(a\)和\(b\),所有大于\(a \times b-a-b\)的数都可以用若干个\(a,b\)相加得到(别问我为什么看见这题想到了这个结论)\(\color{#FFF}{因为它太毒瘤啦qwq}\)。
看到这里蒟蒻一定会问,为什么这道题会和最大公约数有关呢?因为\(exgcd\)告诉我们二元一次方程\(ax+by=c\)在\(c\neq 0\ \ (mod \ \ gcd(x,y))\)时无整数解,这个非常简单,因为\(x=y= 0\ \ (mod \ \ gcd(x,y))\),所以\(c=0 \times a+0 \times b=0(mod\ \ gcd(x,y))\),那么设给定的\(n\)个数的最大公约数\(gcd({a_1},{a_2}, \cdots,{a_n} )=g\),则用给定的\(n\)个数的任意和都是\(g\)的倍数。既然所有\(g\)的倍数都可以构造,那么在模\(k\)意义下有多少个不同的数呢?此时就有一个二元一次方程\(ag=bk+r(0 \leq r <k)\),答案个数也即\(r\)的可能取值个数,变形可得\(ag-bk=r\),由\(exgcd\)得,当且仅当\(r = 0(mod\ gcd(g,k))\)时,方程有整数解。至此我们可以得到,对于任意的\(ans \in [0,k)\)满足\(ans \equiv 0 (mod\ gcd({a_1},{a_2},\cdots ,{a_n},k))\)都可以由若干个\({a_1},{a_2},\cdots,{a_n}\)相加得到(在模\(k\)意义下)。
以上是本题的思路叙述,下面放上\(AC\)代码\(\downarrow \downarrow \downarrow\)
#include<cstdio>//CF1010C
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<string>
#include<cmath>
#include<algorithm>
#define N 100010
using namespace std;
int n,k,a[N],gg,ans;
int gcd(int a,int b){
if(b==0){
return a;
}
return gcd(b,a%b);
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
gg=a[1];
for(int i=2;i<=n;i++){
if(gg==1){
break;
}
if(a[i]>gg){
gg=gcd(a[i],gg);
}
else{
gg=gcd(gg,a[i]);
}
}
if(gg>k){
gg=gcd(gg,k);
}
else{
gg=gcd(k,gg);
}
ans=k/gg;
printf("%d\n",ans);
for(int i=0;i<ans;i++){
printf("%d ",i*gg);
}
return 0;
}
\(p.s.\)有一点小的细节,就是在\(gcd\)已经等于$ 1 $的时候跳出循环,这样能跑的更快一点(其实也快不到哪里去...本来跑的就不慢[逃])
Codeforces | CF1010C 【Border】的更多相关文章
- CodeForces 382C【模拟】
活生生打成了大模拟... #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef unsig ...
- Codeforces 479【E】div3
题目链接:http://codeforces.com/problemset/problem/977/E 题意:就是给你相连边,让你求图内有几个环. 题解:我图论很差,一般都不太会做图论的题.QAQ看官 ...
- Codeforces 479【F】div3
题目链接:http://codeforces.com/problemset/problem/977/F 题意:给你一串数字序列,让你求最长上升子序列,但是这个子序列呢,它的数字得逐渐连续挨着. 题解: ...
- Codeforces 479【D】div3
题目链接:http://codeforces.com/problemset/problem/977/D 题意:给你一个数字序列,定了一个游戏规则.你可以对当前数字进行两个操作 1./ 3 如果这个数 ...
- Codeforces 479【C】div3
题目链接:http://codeforces.com/problemset/problem/977/C 题意:给你n个数字,输出任意一个数字,这个数字刚好大于等于,序列里面k个数字. 题解:排个序,第 ...
- Codeforces 479【B】div3
题目链接: http://codeforces.com/problemset/problem/977/B 题意:字符串,找固定长度为2的重复子串出现次数最多的. 题解:我暴力做的.暴力出奇迹. #in ...
- Codeforces 479【A】div3试个水
题目链接:http://codeforces.com/problemset/problem/977/A 题意:这个题,题目就是让你根据他的规律玩嘛.末尾是0就除10,不是就-1. 题解:题解即题意. ...
- Codeforces | CF1033D 【Divisors】
题目大意:给定\(n(1\leq n\leq500)\)个数\(a_1,a_2\cdots,a_n(1\leq a_i\leq2\cdot10^{18})\),每个数有\(3\sim5\)个因数,求\ ...
- Codeforces | CF1028C 【Rectangles】
(这道题太简单啦...虽说我锤了一上午都没过...我能说这道题和\(CF1029C\)算是同一道题吗...) 按照时间顺序来说...\(CF1029\)在\(CF1028\)前面(而且\(CF1029 ...
随机推荐
- Mysql 索引问题集锦
一.Mysql 中的索引 索引:顾名思义用来检索.查找数据的key (字段) 几种Mysql 中的常见索引分类:普通索引(联合索引).唯一索引.主键索引.全文索引 优点:使得查询数据变快 缺点:更新数 ...
- Django组件之认证系统
Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Dja ...
- 软件工程(FZU2015) 助教总结
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 本次构建之法-SE助教工作,和福州大学张老师协作,福大学生基本发挥出了一定水平,在此做个小结. 教师 张老师本身的SE教学 ...
- 结对项目3-功能增强型带基本函数计算java计算器
-----------------------------------------------------实验报告------------------------------------------- ...
- 福州大学软件工程1816 | W班 第10次作业[个人作业——软件产品案例分析]
作业链接 个人作业--软件产品案例分析 评分细则 本次个人项目分数由两部分组成(课堂得分(老师/助教占比60%,学生占比40%)满分40分+博客分满分60分) 课堂得分和博客得分表 评分统计图 千帆竞 ...
- html总结:固定表格中单元格宽度
当然要提前设置好table的width值,然后再写这个,使得每列宽度都相等. <style> table { table-layout: fixed; } </style>
- mysql之找回误删数据
场景:我们开发阶段,经常要有一些测试数据在我们测试相关功能的时候,是十分必要的.后期由于引入了正式的数据,但是测试数据并没有被及时清理.这个时候由于一个误删除,导致一些正式的数据被删除,由此,一场追找 ...
- jQuery操作复选框checkbox技巧总结 ---- 设置选中、取消选中、获取被选中的值、判断是否选中等
转载:https://blog.csdn.net/chenchunlin526/article/details/77448168 jQuery操作复选框checkbox技巧总结 --- 设置选中.取消 ...
- 剑指offer(13)
题目: 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 思路: 判断当前两个根结点是否相等,如果相等,判断左右子树是否相等,如果不依次判断左右子树是否满足上 ...
- Linux基础学习(12)--Linux服务管理
第十二章——Linux服务管理 一.服务简介与分类 1.服务的分类: 注:独立的服务放在内存中(好处:响应的速率快,坏处:独立的服务越多,耗费的内存资源越多):xinetd服务本身是独立的,在内存中, ...