【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
题面
题解
为啥泥萌做法和我都不一样啊
一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\)的重量,而多个物品也只要\(gcd\)就好了。
现在的问题转变成了有多少个集合\(S\),满足\(S+\{P\}\)中所有数的\(gcd\)是\(w\)的因数。那么实际上就是直接令\(a[i]'=gcd(a[i],P)\),然后选出一个集合使得它是\(gcd(P,w)\)的因数。
考虑对于\(P\)的每个因数预处理答案,不记得在哪里看到的,当\(P\)较大的时候,其约数个数是\(P^{\frac{1}{3}}\)级别,那么在这里就可以暴力把所有因数算出来之后\(O(\sigma^2)\)计算,即先统计有多少个\(a[i]'\)是当前\(d\)的倍数,那么贡献是\(2^{s}-1\),然后容斥减去所有\(d\)的倍数的答案就是\(gcd\)为\(d\)的答案。然后再\(O(\sigma^2)\)的计算约数和就好了。
这样子复杂度大概是\(O((n+Q)logP+\sigma(P)^2)\),前面那个\(log\)来自于\(gcd\)的复杂度。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,Q,P,a[MAX],bin[MAX];
const int blk=50000;
int w[blk],tot,id1[blk],id2[blk],f[blk],s[blk];
int ID(int x){return x<blk?id1[x]:id2[P/x];}
int S[blk],top;
int main()
{
n=read();Q=read();P=read();
for(int i=1;i<=n;++i)a[i]=__gcd(read(),P);
bin[0]=1;for(int i=1;i<=n;++i)bin[i]=(bin[i-1]<<1)%MOD;
for(int i=1;i*i<=P;++i)
if(P%i==0)
{
w[++tot]=i;
if(P/i!=i)w[++tot]=P/i;
}
sort(&w[1],&w[tot+1]);
for(int i=1;i<=tot;++i)
if(w[i]<blk)id1[w[i]]=i;
else id2[P/w[i]]=i;
for(int i=1;i<=n;++i)s[ID(a[i])]+=1;
for(int i=tot;i;--i)
{
int cnt=0;top=0;
for(int j=i;j<=tot;++j)
if(w[j]%w[i]==0)S[++top]=j,cnt+=s[j];
f[i]=bin[cnt]-1;
for(int j=2;j<=top;++j)f[i]=(f[i]+MOD-f[S[j]])%MOD;
}
for(int i=tot;i;--i)
for(int j=1;j<i;++j)
if(w[i]%w[j]==0)f[i]=(f[i]+f[j])%MOD;
while(Q--)
{
int d=__gcd(read(),P);
printf("%d\n",f[ID(d)]);
}
return 0;
}
【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)的更多相关文章
- BZOJ5302: [Haoi2018]奇怪的背包
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...
- BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...
- BZOJ5302 HAOI2018奇怪的背包(动态规划)
由裴蜀定理,子集S有解当且仅当gcd(S,P)|w. 一个显然的dp是设f[i][j]为前i个数gcd为j的选取方案.注意到这里的gcd一定是P的约数,所以状态数是n√P的.然后可以通过这个得到gcd ...
- [BZOJ5302][HAOI2018]奇怪的背包(DP)
由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w. 于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需 ...
- [HAOI2018]奇怪的背包 (DP,数论)
[HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达 ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- haoi2018奇怪的背包题解
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p ...
- bzoj 5302: [Haoi2018]奇怪的背包
Description Solution 首先 \(v_1,v_2,v_3...v_n,P\) 能够构成的最小数是 \(gcd(P,v_1,v_2,v_3...v_n)\) 然后 \(gcd(P,v_ ...
- Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】
题目分析: 首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个. 由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1, ...
随机推荐
- Webbench、ab命令:做压力测试的工具和性能的监控工具
DDOS攻击:???DDOS概述:分布式拒绝服务(DDoS:Distributed Denial of Service)攻击,指借助于客户/服务器技术,将多个计算机联合起来作为攻击平台,对一个或多个目 ...
- [转帖]Windows 操作系统有哪些原生的工具和软件不被人了解却很有用?
Windows 操作系统有哪些原生的工具和软件不被人了解却很有用? 蛋蛋 司马米青E1E1九木 https://www.zhihu.com/question/25343481/answer/30798 ...
- hive权限配置
基于CDH5.x的Hive权限配置 1.打开权限控制,默认是没有限制的 set hive.security.authorization.enabled=true; 2.配置默认权限 hive.secu ...
- Day 3-4 函数进阶
1.名称空间 定义:Python使用叫做命名空间的东西来记录变量的轨迹.命名空间是一个 字典(dictionary) ,它的键就是变量名,它的值就是那些变量的值.是存放变量和值的内存地址的绑定关系的空 ...
- C# Note2:委托(delegate) & Lambda表达式 & 事件(event)
前言 本文主要讲述委托和Lambda表达式的基础知识,以及如何通过Lambda表达式实现委托调用,并阐述.NET如何将委托用作实现事件的方式. 参考:C#高级编程 1.什么是委托(delegate)? ...
- 你不知道的JavaScript——this词法
https://www.cnblogs.com/hutaoer/p/3423782.htmlhttps://www.cnblogs.com/vicky-li/p/8669549.htmlhttps:/ ...
- 运行pip报错:Fatal error in launcher: Unable to create process using '"'
参考: https://blog.csdn.net/cjeric/article/details/73518782
- Git使用:Linux(Ubuntu 14.04 x64)下安装Git并配置连接GitHub
github是一个非常好的网络代码托管仓库,知晓许久,但是一直没有用起来,最近才开始使用git管理自己的文档和代码. Git是非常强大的版本管理工具,今天就告诉大家,如何在Linux下安装GIt,并且 ...
- python爬虫之redis环境简单部署
Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...
- python爬虫之PyQuery的基本使用
PyQuery库也是一个非常强大又灵活的网页解析库,如果你有前端开发经验的,都应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery 是 Python 仿照 jQuery 的严 ...