69. Sqrt(x)

Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium

提交网址: https://leetcode.com/problems/sqrtx/

Implement int sqrt(int x).

Compute and return the square root of x.

分析:

解法1:牛顿迭代法(牛顿切线法)

Newton's Method(牛顿切线法)是由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)中最早提出的。约瑟夫·拉弗森也曾于1690年在Analysis Aequationum中提出此方法。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

蓝线表示方程f(x)而红线表示切线. 可以看出\(x_{n+1}\)\(x_n\)更靠近f所要求的根x.

既然牛顿迭代法可以用来求解方程的根,那么不妨以方程\(x^2=n\)为例,来试着求解它的根。为此。令\(f(x) = x^2 - n\), 也就是相当于求解f(x)=0的解,如上图所示。 

       首先随便找一个初始值\(x_0\),如果\(x_0\)不是解,做一个经过\((x_0,f( x_0))\)这个点的切线,与轴的交点为\(x_1\)。同理,如果\(x_1\)不是解,做一个经过\((x_1,f( x_1))\)这个点的切线,与轴的交点为\(x_2\)。 以此类推... 以这样的方式得到的会无限趋近于f(x)=0的解。 

判断\(x_i\)是否是f(x)=0的解有两种方法:1. 直接计算的值判断\(f(x_i)\)是否为0;2. 判断f(x)=0前后紧邻的两个解是否无限接近。 

经过这个点\((x_i, f(x_i))\)的切线方程为 \(f(x) = f(x_i) + f'(x_i)(x - x_i)\)

其中,\(f'(x_i)\)为\(f(x)\)的导数,本题中导数为\(2x\)。令切线方程等于0 (纵轴截距取0),即可求出:

\(x_{i+1}=x_i - \frac{f(x_i)}{f'(x_i)}\)

代入\(f(x) = x^2 - n\),继续化简:

\(x_{i+1}=x_i -\frac{x_i^2 - n}{2x_i} = x_i - \frac{x_i}{2} + \frac{n}{2x_i} = \frac{x_i}{2} + \frac{n}{2x_i}\)

基于上述迭代公式,可以给出了一个求平方根的算法。事实上,这也的确是很多语言中内置的开平方函数的实现方法。牛顿迭代法也同样适用于求解其他多次方程的解。

已AC代码:

#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0; // res和pre是邻近的两次迭代结果,也可用变量adj表示邻近的值
double res = 1; // 在1附近开始找,迭代逼近目标值
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return int(res); // 返回值要求为int,需强制转换
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}

P.S:本题是求解整数的平方根,并且返回值也是整型。在上述代码基础上稍微做修改,就可以同样适用于double(仅限方法1)。

#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
double mySqrt(double x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0;
double res = 1; // 所求值为double时,迭代的初始值不能为0
// double res = 0.000001;
// double next = 1; // res和pre是连续两次的迭代结果(邻近值)
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return (res);
}
};
// 下面为测试
int main()
{
double x1=7;
double x2=2222147483648;
double x3=-5;
Solution sol;
double res1=sol.mySqrt(x1);
double res2=sol.mySqrt(x2);
double res3=sol.mySqrt(x3);
printf("%lf \n", res1);
printf("%lf \n", res2);
printf("%lf \n", res3);
return 0;
}

PS: 由于所求值为double时,迭代的初始值不能为0。此代码中pre和res可以用res和next替换,见注释部分,当然循环中也得将pre换为next

解法2:二分搜索法

对于一个非负数n,它的平方根取整 \(\lfloor \sqrt(x) \rfloor \leq (\lfloor \frac{x}{2} \rfloor +1)\),如下图所示,有x=1、2、4共3个整数交点,x>4以后\(\lfloor \sqrt(x) \rfloor \) 恒小于\(\lfloor \frac{x}{2} \rfloor +1\).

上图可在浏览器的新标签中打开,高清的

由于int sqrt(int x)接受的参数与返回值均为int型,故⌊√x⌋ ≤ (⌊x/2⌋+1)即等价于强数据类型语言(比如:C++、C、Java等)中的√x(目标值)≤ x/2+1 (x为自然数,非负整数). 于是在[0, x/2+1]这个范围内进行二分搜索,可以求出n的int型平方根,mid=(low+up)/2,其初值为x/2,结果应在[low, up]的mid或up处取得。如果用弱数据类型的语言(比如:PHP、Python、JavaScript等)实现此方法,需先自行ceiling或ceil进行下取整!

但此法不适用于double,因为此法利用了int型的特点。

AC代码:

#include <cstdio>
#include<climits>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x<0) return INT_MIN;
long long low=0;
long long up=x;
while(low <= up)
{
long long mid=(low+up)/2; // 取中间值mid,在此处如果改为位运算居然使程序变慢了!
long long square=mid*mid;
if(x==square) return mid; // 目标值等于mid处平方,提前退出循环出口
else if(x>square) low=mid+1; // 目标值大于mid处平方,在开区间(mid, up]中找,下界low的值调整为mid-1
else up=mid-1; // 目标值小于mid处平方,在开区间[low, mid)中找,上界up的值调整为mid+1
}
return up;
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}

此代码运行时间为8 ms,打败了39.64%的C++提交,除以2改成右移1位后,反而变慢了,12 ms,只打败了4.39%的C++提交...

相关链接:

http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html (方法1代码测试未通过,方法2顺利)

http://blog.csdn.net/baimafujinji/article/details/50390841 (参考了循环的出口条件)

C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】的更多相关文章

  1. C#版 - LeetCode 148. Sort List 解题报告(归并排序小结)

    leetcode 148. Sort List 提交网址: https://leetcode.com/problems/sort-list/  Total Accepted: 68702 Total ...

  2. C++版 - Leetcode 400. Nth Digit解题报告

    leetcode 400. Nth Digit 在线提交网址: https://leetcode.com/problems/nth-digit/ Total Accepted: 4356 Total ...

  3. LeetCode 1 Two Sum 解题报告

    LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...

  4. 【LeetCode】Permutations II 解题报告

    [题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...

  5. 【LeetCode】Island Perimeter 解题报告

    [LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...

  6. 【LeetCode】01 Matrix 解题报告

    [LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...

  7. 【LeetCode】Largest Number 解题报告

    [LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...

  8. 【LeetCode】Gas Station 解题报告

    [LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...

  9. 【LeetCode】120. Triangle 解题报告(Python)

    [LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...

随机推荐

  1. kenlm的使用

    1.训练模型 install_path/bin/lmplz -o -S % -T /temp <text >text.arpa -o  表示n_gram 中的n(必选) -S  内存使用( ...

  2. 实验十五 GUI编程练习与应用程序部署

    实验十五  GUI编程练习与应用程序部署 实验时间 2018-12-6 一:理论部分 1.Java 程序的打包:编译完成后,程序员将.class 文件压缩打包为 .jar 文件后,GUI 界面序就可以 ...

  3. XBee® ZigBee 模块使用方法

    Digi的ZigBee模块简称S2,根据芯片版本的不同历史上分别有S2,S2B,S2C等,每次硬件平台升级,都会引入一个新的尾缀字母.历史版本中S2和S2B已经停产并被S2C替代.当前S2C是主流平台 ...

  4. 递归打印lua中的table

    在lua中,table是比较常用的数据形式,有时候为了打印出里面的内容,需要做一些特殊处理. 废话不多讲,直接粘代码: print = release_print -- 递归打印table local ...

  5. 迭代加深搜索 C++解题报告 :[SCOI2005]骑士精神

    题目 此题根据题目可知是迭代加深搜索. 首先应该枚举空格的位置,让空格像一个马一样移动. 但迭代加深搜索之后时间复杂度还是非常的高,根本过不了题. 感觉也想不出什么减枝,于是便要用到了乐观估计函数(O ...

  6. Python——教你画朵太阳花

    用python中的turtle函数画个太阳花,有以下几个步骤 1.首先,我们在开始中找到Python语言的IDLE软件脚本     2.然后出现该软件界面,如图,点击上面的Eile     3.然后在 ...

  7. 洛谷 p2440木材加工

    #include <iostream>#include <cstring>using namespace std;const int N = 1e5 + 100;int a[N ...

  8. Paper | 深度网络中特征的可迁移性

    目录 1. 核心贡献 2. 实验设置 2.1. 任务设置 2.2. 网络设置 3. 实验结果 4. 启发 论文:How transferable are features in deep neural ...

  9. Android基础知识学习

    IPC  (Inter-Process Communication) 意思是: 进程间的通信,是指两个进程之间进行数据交换的过程. Android中如何开启多进程呢? 只需要给四大组件(Activit ...

  10. 抄一篇maven的备忘

    标注下来源:http://www.trinea.cn/android/maven/ 由浅入深,主要介绍maven的用途.核心概念(Pom.Repositories.Artifact.Build Lif ...