C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】
69. Sqrt(x)
Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium
提交网址: https://leetcode.com/problems/sqrtx/
Implement int sqrt(int x).
Compute and return the square root of x.
分析:
解法1:牛顿迭代法(牛顿切线法)
Newton's Method(牛顿切线法)是由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)中最早提出的。约瑟夫·拉弗森也曾于1690年在Analysis Aequationum中提出此方法。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。


蓝线表示方程f(x)而红线表示切线. 可以看出\(x_{n+1}\)比\(x_n\)更靠近f所要求的根x.
既然牛顿迭代法可以用来求解方程的根,那么不妨以方程\(x^2=n\)为例,来试着求解它的根。为此。令\(f(x) = x^2 - n\), 也就是相当于求解f(x)=0的解,如上图所示。
首先随便找一个初始值\(x_0\),如果\(x_0\)不是解,做一个经过\((x_0,f( x_0))\)这个点的切线,与轴的交点为\(x_1\)。同理,如果\(x_1\)不是解,做一个经过\((x_1,f( x_1))\)这个点的切线,与轴的交点为\(x_2\)。 以此类推... 以这样的方式得到的会无限趋近于f(x)=0的解。
判断\(x_i\)是否是f(x)=0的解有两种方法:1. 直接计算的值判断\(f(x_i)\)是否为0;2. 判断f(x)=0前后紧邻的两个解是否无限接近。
经过这个点\((x_i, f(x_i))\)的切线方程为 \(f(x) = f(x_i) + f'(x_i)(x - x_i)\)
其中,\(f'(x_i)\)为\(f(x)\)的导数,本题中导数为\(2x\)。令切线方程等于0 (纵轴截距取0),即可求出:
\(x_{i+1}=x_i - \frac{f(x_i)}{f'(x_i)}\)
代入\(f(x) = x^2 - n\),继续化简:
\(x_{i+1}=x_i -\frac{x_i^2 - n}{2x_i} = x_i - \frac{x_i}{2} + \frac{n}{2x_i} = \frac{x_i}{2} + \frac{n}{2x_i}\)
基于上述迭代公式,可以给出了一个求平方根的算法。事实上,这也的确是很多语言中内置的开平方函数的实现方法。牛顿迭代法也同样适用于求解其他多次方程的解。
已AC代码:
#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0; // res和pre是邻近的两次迭代结果,也可用变量adj表示邻近的值
double res = 1; // 在1附近开始找,迭代逼近目标值
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return int(res); // 返回值要求为int,需强制转换
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}
P.S:本题是求解整数的平方根,并且返回值也是整型。在上述代码基础上稍微做修改,就可以同样适用于double(仅限方法1)。
#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
double mySqrt(double x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0;
double res = 1; // 所求值为double时,迭代的初始值不能为0
// double res = 0.000001;
// double next = 1; // res和pre是连续两次的迭代结果(邻近值)
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return (res);
}
};
// 下面为测试
int main()
{
double x1=7;
double x2=2222147483648;
double x3=-5;
Solution sol;
double res1=sol.mySqrt(x1);
double res2=sol.mySqrt(x2);
double res3=sol.mySqrt(x3);
printf("%lf \n", res1);
printf("%lf \n", res2);
printf("%lf \n", res3);
return 0;
}
PS: 由于所求值为double时,迭代的初始值不能为0。此代码中pre和res可以用res和next替换,见注释部分,当然循环中也得将pre换为next
解法2:二分搜索法
对于一个非负数n,它的平方根取整 \(\lfloor \sqrt(x) \rfloor \leq (\lfloor \frac{x}{2} \rfloor +1)\),如下图所示,有x=1、2、4共3个整数交点,x>4以后\(\lfloor \sqrt(x) \rfloor \) 恒小于\(\lfloor \frac{x}{2} \rfloor +1\).

上图可在浏览器的新标签中打开,高清的
由于int sqrt(int x)接受的参数与返回值均为int型,故⌊√x⌋ ≤ (⌊x/2⌋+1)即等价于强数据类型语言(比如:C++、C、Java等)中的√x(目标值)≤ x/2+1 (x为自然数,非负整数). 于是在[0, x/2+1]这个范围内进行二分搜索,可以求出n的int型平方根,mid=(low+up)/2,其初值为x/2,结果应在[low, up]的mid或up处取得。如果用弱数据类型的语言(比如:PHP、Python、JavaScript等)实现此方法,需先自行ceiling或ceil进行下取整!
但此法不适用于double,因为此法利用了int型的特点。
AC代码:
#include <cstdio>
#include<climits>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x<0) return INT_MIN;
long long low=0;
long long up=x;
while(low <= up)
{
long long mid=(low+up)/2; // 取中间值mid,在此处如果改为位运算居然使程序变慢了!
long long square=mid*mid;
if(x==square) return mid; // 目标值等于mid处平方,提前退出循环出口
else if(x>square) low=mid+1; // 目标值大于mid处平方,在开区间(mid, up]中找,下界low的值调整为mid-1
else up=mid-1; // 目标值小于mid处平方,在开区间[low, mid)中找,上界up的值调整为mid+1
}
return up;
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}
此代码运行时间为8 ms,打败了39.64%的C++提交,除以2改成右移1位后,反而变慢了,12 ms,只打败了4.39%的C++提交...
相关链接:
http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html (方法1代码测试未通过,方法2顺利)
http://blog.csdn.net/baimafujinji/article/details/50390841 (参考了循环的出口条件)
C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】的更多相关文章
- C#版 - LeetCode 148. Sort List 解题报告(归并排序小结)
leetcode 148. Sort List 提交网址: https://leetcode.com/problems/sort-list/ Total Accepted: 68702 Total ...
- C++版 - Leetcode 400. Nth Digit解题报告
leetcode 400. Nth Digit 在线提交网址: https://leetcode.com/problems/nth-digit/ Total Accepted: 4356 Total ...
- LeetCode 1 Two Sum 解题报告
LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...
- 【LeetCode】Permutations II 解题报告
[题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...
- 【LeetCode】Island Perimeter 解题报告
[LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...
- 【LeetCode】01 Matrix 解题报告
[LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...
- 【LeetCode】Largest Number 解题报告
[LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...
- 【LeetCode】Gas Station 解题报告
[LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...
- 【LeetCode】120. Triangle 解题报告(Python)
[LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...
随机推荐
- Springboot & Mybatis 构建restful 服务
Springboot & Mybatis 构建restful 服务一 1 前置条件 jdk测试:java -version maven测试:命令行之行mvn -v eclipse及maven插 ...
- MySql添加远程超级管理员用户
可以通过发出GRANT语句增加新用户:首先在数据库本机上用ROOT用户登录上MySql,然后运行命令: mysql>GRANT ALL PRIVILEGES ON *.* TO admin'@' ...
- 使用双引擎,让kbmmw 的客户端访问更方便
前面我们一直都讲了如何使用kbmmw smarthttpservice 给客户端提供REST 服务.主要都是返回给 浏览器访问的,如果我们使用delphi 开发桌面应用,如何使用这些服务呢?其实一切 ...
- CentOS下安装Git
在终端输入命令:yum install git,此时会进行提示安装,输入y, 在这种安装方式下,速度很快(windows系统下下载客户端速度超慢),当出现安装完毕时,就可以了. 安装完毕后输入git ...
- MIUI 10以上版本通用线刷ROOT方法
1.高版本系统解锁 (解锁工具下载) http://www.miui.com/unlock/index.html 注意事项:登陆解锁工具的账号必须是登陆小米手机的账号 解锁步骤在解锁工具上有说明,就两 ...
- 编程感悟-建立好代码sop
1.最近学django和python,发现很多的函数记不住,这时候我百度了一下,发现记不住是程序员的正常情况, 这下心安理得多了,记好笔记和咱的sop吧,会很快. 社会是不是也这样,好多东西也记不住, ...
- vue-element 动态单选多选全选
实现效果如图 数据格式如下: pps: [{"code":"6","createTime":"2018-09-07 00:00:0 ...
- servlet概述(作业11)
1.什么是servlet. Servlet(Server Applet)是Java Servlet的简称,称为小服务程序或服务连接器,用Java编写的服务器端程序,具有独立于平台和协议的特性,主要功能 ...
- python3--迭代
判断一个对象是否能够进行迭代的方法 Iterable from collections import Iterable dict = {'name':'Joe','age':17} print (is ...
- (一)Javascript 面向对象编程:封装
Javascript 面向对象编程:封装 作者:阮一峰 Javascript是一种基于对象(object-based)的语言,你遇到的所有东西几乎都是对象.但是,它又不是一种真正的面向对象编程(OOP ...