loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
题意
Sol
\]
然后直接套路斜率优化,发现\(k, x\)都不单调
写个cdq就过了
辣鸡noi.ac居然出裸题&&原题
#include<bits/stdc++.h>
#define Pair pair<double, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define db double
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e18 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N;
struct Sta {
int id;
db h, w, x, y, f, ad;
void Get() {
x = 2 * h;
y = f + h * h - w;
}
}a[MAXN], st[MAXN];
vector<Pair> v;
int comp(const Sta &a, const Sta &b) {
return a.id < b.id;
}
double GetK(Pair a, Pair b) {
if((b.fi - a.fi) < eps) return INF;
return (b.se - a.se) / (b.fi - a.fi);
}
int sid[MAXN], cur;
void GetConvexHull(int l, int r) {
while(cur) sid[cur--] = 0;
v.clear();
for(int i = l; i <= r; i++) {
double x = a[i].x, y = a[i].y;
while((v.size() > 1 && ((GetK(v[v.size() - 1], MP(x, y)) < GetK(v[v.size() - 2], v[v.size() - 1])))) ||
((v.size() > 0) && (v[v.size() - 1].fi == x) && (v[v.size() - 1].se >= y)))
v.pop_back(), sid[cur--] = 0;
v.push_back(MP(x, y)); sid[++cur] = a[i].id;
}
}
int cnt = 0;
db Find(int id, db k) {
int tmp = v.size();
int l = 0, r = v.size() - 1, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if((mid == v.size() - 1) || (GetK(v[mid], v[mid + 1]) > k)) r = mid - 1, ans = mid;
else l = mid + 1;
}
return v[ans].se - k * v[ans].fi;
}
void CDQ(int l, int r) {
if(l == r) {
a[l].Get();
return ;
}
int mid = l + r >> 1;
CDQ(l, mid);
GetConvexHull(l, mid);
for(int i = mid + 1; i <= r; i++) {
chmin(a[i].f, Find(i, a[i].h) + a[i].ad);
}
CDQ(mid + 1, r);
int tl = l, tr = mid + 1, tot = tl - 1;
while(tl <= mid || tr <= r) {
if((tr > r) || (tl <= mid && a[tl].x < a[tr].x)) st[++tot] = a[tl++];//?????tl <= mid
else st[++tot] = a[tr++];
}
for(int i = l; i <= r; i++) a[i] = st[i];
}
signed main() {
N = read();
for(int i = 1; i <= N; i++) a[i].h = read();
for(int i = 1; i <= N; i++) {
a[i].w = read() + a[i - 1].w; a[i].id = i;
a[i].f = a[i - 1].f + sqr(a[i].h - a[i - 1].h);
a[i].ad = sqr(a[i].h) + a[i - 1].w;
if(i == 1) a[1].f = 0;
}
CDQ(1, N);
sort(a + 1, a + N + 1, comp);
// for(int i = 1; i <= N; i++) cout << i << ' ' << (LL)a[i].f << '\n';
cout << (LL)a[N].f;
return 0;
}
loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)的更多相关文章
- loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...
- @loj - 2483@「CEOI2017」Building Bridges
目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...
- LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges
题目传送门:LOJ #2483. 题意简述: 有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性. 你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移 ...
- LOJ 2304 「NOI2017」泳池——思路+DP+常系数线性齐次递推
题目:https://loj.ac/problem/2304 看了各种题解…… \( dp[i][j] \) 表示有 i 列.第 j 行及以下默认合法,第 j+1 行至少有一个非法格子的概率,满足最大 ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)
题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...
- 【动态规划】loj#2485. 「CEOI2017」Chase
有意思的可做dp题:细节有点多,值得多想想 题目描述 在逃亡者的面前有一个迷宫,这个迷宫由 nnn 个房间和 n−1n-1n−1 条双向走廊构成,每条走廊会链接不同的两个房间,所有的房间都可以通过走廊 ...
- 【刷题】LOJ 2480 「CEOI2017」One-Way Streets
题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,现在想要把这张图定向. 有 \(p\) 个限制条件,每个条件形如 \((xi,yi)\) ,表示在新的有向图当中,\(x_i\) 要能够 ...
- @loj - 2480@ 「CEOI2017」One-Way Streets
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一张 n 个点 m 条边的无向图,现在想要把这张图定向. 有 ...
随机推荐
- rabbitmq系统学习(三)集群架构
RabbitMQ集群架构模式 主备模式 实现RabbitMQ的高可用集群,一般在并发和数据量不高的情况下,这种模型非常的好用且简单.主备模式也称为Warren模式 HaProxy配置 listen r ...
- python 将一个列表去重,并且不打乱它原有的排列顺序
old_lst = [2, 2, 1, 1, 3, 4] new_lst = list(set(old_lst)) new_lst.sort(key=old_lst.index) print(new_ ...
- 第八篇: 服务链路追踪(Spring Cloud Sleuth)
一.简介 一个分布式系统由若干分布式服务构成,每一个请求会经过多个业务系统并留下足迹,但是这些分散的数据对于问题排查,或是流程优化都很有限. 要能做到追踪每个请求的完整链路调用,收集链路调用上每个 ...
- ubuntu ImageMagick 图像转换工具
ImageMagick(简称 IM)是一个支持 GPL 协议的开源免费软件包.它由一组命令行工具组成的.它可以对超过 100 种的图像格式(包括 DPX, EXR, GIF, JPEG, JPEG-2 ...
- spark面试总结1
Spark Core面试篇01 一.简答题 1.Spark master使用zookeeper进行HA的,有哪些元数据保存在Zookeeper? 答:spark通过这个参数spark.deploy.z ...
- 基于Alpha-Beta剪枝的欢乐斗地主残局辅助
2019年4月17日更新: 将搜索主函数优化为局部记忆化搜索,再次提高若干倍搜索速度 更新了main和player,helper无更新 #include "Player-v3.0.cpp&q ...
- 算法:时间复杂度+二分查找法(Java/Go/Python)实现
导读 曾几何时学好数据结构与算法是我们从事计算机相关工作的基本前提,然而现在很多程序员从事的工作都是在用高级程序设计语言(如Java)开发业务代码,久而久之,对于数据结构和算法就变得有些陌生了,由于长 ...
- Asp.Net Core Web Api图片上传(一)集成MongoDB存储实例教程
Asp.Net Core Web Api图片上传及MongoDB存储实例教程(一) 图片或者文件上传相信大家在开发中应该都会用到吧,有的时候还要对图片生成缩略图.那么如何在Asp.Net Core W ...
- mysql 导入 CSV文件命令行 ERROR 13 (HY000): Can't get stat of
一定要查看好CSV字段结构是否和文件的表结构字段一致 load data local infile 'F:/MySqlData/test1.csv' --CSV文件存放路径 into table st ...
- ConcurrentHashMap 解读
初始化: 问题:如何当且仅只有一个线程初始化table private final Node<K,V>[] initTable() { Node<K,V>[] tab; int ...