创建表

create 'test1', 'lf', 'sf'

lf: column family of LONG values (binary value)
-- sf: column family of STRING values

导入数据

put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123' put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'

一个用户(userX),在什么时间(tsX),作为rowkey

对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy

查询案例

谁的值=sku188

scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188

谁的值包含88

scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288

通过广告点击进来的(column为c2)值包含88的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288

通过搜索进来的(column为s)值包含123或者222的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"

ROW                          COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

rowkey为user1开头的

scan 'test1', FILTER => "PrefixFilter ('user1')"

ROW                          COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value

scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=

从user1|ts2开始,找到所有的rowkey以user1开头的

scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

从user1|ts2开始,找到所有的到rowkey以user2开头

scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts3的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))} ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

加入一条测试数据

put 'test1', 'user2|err', 'sf:s1', 'sku999'

查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来

import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

加入测试数据

put 'test1', 'user1|ts9', 'sf:b1', 'sku1'

b1开头的列中并且值为sku1的

scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"

ROW                          COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1

SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))} ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1

HBase基础之常用过滤器hbase shell操作(转)的更多相关文章

  1. HBase基础之常用过滤器hbase shell操作

    创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value) -- sf: column family ...

  2. HBase 相关API操练(一):Shell操作

    HBase 为用户提供了一个非常方便的使用方式, 我们称之为“HBase Shell”. HBase Shell 提供了大多数的 HBase 命令, 通过 HBase Shell 用户可以方便地创建. ...

  3. Shell基础:常用技巧&重定向&管道操作

    Shell脚本介绍和常用工具 Shell脚本 Shell脚本:实际就是windows里的批处理脚本,多条可一次执行的Shell命令集合.Linux上的脚本可以用很多种语言实现,bash shell是比 ...

  4. Hbase学习记录(2)| Shell操作

    查看表结构 describe '表名' 查看版本 get '表名','zhangsan'{COLUMN=>'info:age',VERSIONS=>3} 删除整行 deleteall '表 ...

  5. HBase(3)-安装与Shell操作

    一. 安装 1. 启动Zookeeper集群 2. 启动Hadoop集群 3. 上传并解压HBase -bin.tar.gz -C /opt/module 4. 修改配置文件 #修改habse-env ...

  6. Hadoop Shell 操作

    此随笔仅记录一下常用的Hadoop shell 操作的命令 参考官方文档    http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html FS S ...

  7. hbase shell基础和常用命令详解(转)

    HBase shell的基本用法 hbase提供了一个shell的终端给用户交互.使用命令hbase shell进入命令界面.通过执行 help可以看到命令的帮助信息. 以网上的一个学生成绩表的例子来 ...

  8. hbase shell基础和常用命令详解

    HBase是Google Bigtable的开源实现,它利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服 ...

  9. HBASE与hive对比使用以及HBASE常用shell操作。与sqoop的集成

    2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 ...

随机推荐

  1. .net core 2.0 Redis的基本使用

    存Session 先配置`appsetting.json`文件 "ConnectionStrings": { "Redis": "ip:6379,ab ...

  2. BZOJ4356Ceoi2014 Wall——堆优化dijkstra+最短路树

    题目描述 给出一个N*M的网格图,有一些方格里面存在城市,其中首都位于网格图的左上角.你可以沿着网络的边界走,要求你走的路线是一个环并且所有城市都要被你走出来的环圈起来,即想从方格图的外面走到任意一个 ...

  3. BZOJ4912 SDOI2017天才黑客(最短路+虚树)

    容易想到把边当成点重建图跑最短路.将每条边拆成入边和出边,作为新图中的两个点,由出边向入边连边权为原费用的边.对于原图中的每个点,考虑由其入边向出边连边.直接暴力两两连边当然会被卡掉,注意到其边权是t ...

  4. 第十九天 标准目录与time 模块

      今日内容 1.目录规范 ***** (1)文件夹的规范写法 bin 可执行文件 conf 配置文件 core 主要业务逻辑 db 数据文件 lib 库 (公共代码 第三方模块) log 日志文件 ...

  5. 洛谷P2722总分题解

    题目 这个题是一个裸的完全背包问题,但是数组需要开大, 代码 #include<iostream> using namespace std; int n,m,v,i; int c[1000 ...

  6. Crazy Circuits HDU - 3157(有源汇有上下界最小流)

    给出每条边的下界 求最小流 板题 提供两个板子代码 虽然这个题 第一个比较快 但在loj上https://loj.ac/problem/117 的板题  第一个1700+ms 第二个才600+ms   ...

  7. Task Schedule HDU - 3572(按时间点建边)

    问题描述 我们的几何公主XMM已经开始研究计算几何学,专注于她新开的工厂.她的工厂引进了M台新机器来处理即将到来的N个任务.对于第i个任务,工厂必须在第Si天或之后开始处理它,处理Pi天,并在Ei之前 ...

  8. nginx配置80端口访问8080+项目名地址

    tomcat访问项目,一般是 ip + 端口 + 项目名 nginx 配置 location / {} ,一般只能跳转到 ip + 端口,如果想要直接访问项目,就需要修改tomcat的配置了 如何保证 ...

  9. 使用kubeadm安装Kubernetes

    Docker安装 yum install -y yum-utils yum-config-manager --add-repo https://docs.docker.com/v1.13/engine ...

  10. 使用nmon监控Linxu服务器性能

    nmon是IBM开发的Linux软件工具.能够监控多项Linux服务,最常见的如:CPU使用率.内存使用率.硬盘读写.网卡流量等. 并能设置参数,将记录的数据保存到文件,利用Excel做统计分析. 安 ...