介绍

也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table。虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容,经常需要记住它的使用语法。所以,本文将重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析。

如果你对这个概念不熟悉,wikipedia上对它做了详细的解释。顺便说一下,你知道微软为PivotTable(透视表)注册了商标吗?其实以前我也不知道。不用说,下面我将讨论的透视表并不是PivotTable。

作为一个额外的福利,我创建了一个总结pivot_table的简单备忘单。你可以在本文的最后找到它,我希望它能够对你有所帮助。如果它帮到了你,请告诉我。

数据

使用pandas中pivot_table的一个挑战是,你需要确保你理解你的数据,并清楚地知道你想通过透视表解决什么问题。其实,虽然pivot_table看起来只是一个简单的函数,但是它能够快速地对数据进行强大的分析。

在本文中,我将会跟踪一个销售渠道(也称为漏斗)。基本的问题是,一些销售周期很长(可以想一下“企业软件”、“资本设备”等),而管理者想更详细地了解它一整年的情况。

典型的问题包括:

  • 本渠道收入是多少?
  • 渠道的产品是什么?
  • 谁在什么阶段有什么产品?
  • 我们年底前结束交易的可能性有多大?

很多公司将会使用CRM工具或者其他销售使用的软件来跟踪此过程。虽然他们可能拥有有效的工具对数据进行分析,但肯定有人需要将数据导出到Excel,并使用一个透视表工具来总结这些数据。

使用Pandas透视表将是一个不错的选择,应为它有以下优点:

  • 更快(一旦设置之后)
  • 自行说明(通过查看代码,你将知道它做了什么)
  • 易于生成报告或电子邮件
  • 更灵活,因为你可以定义定制的聚合函数

Read in the data

首先,让我们搭建所需的环境。

如果你想跟随我继续下去,那么可以下载这个Excel文件。

 
 
1
2
import pandas as pd
import numpy as np

版本提醒

因为Pivot_table API已经随着时间有所改变,所以为了使本文中示例代码能够正常工作,请确保你安装了最近版本的Pandas(>0.15)。本文示例还用到了category数据类型,而它也需要确保是最近版本。

首先,将我们销售渠道的数据读入到数据帧中。

 
 
1
2
df = pd.read_excel("../in/sales-funnel.xlsx")
df.head()

为方便起见,我们将上表中“Status”列定义为category,并按我们想要的查看方式设置顺序。

其实,并不严格要求这样做,但这样做能够在分析数据的整个过程中,帮助我们保持所想要的顺序。

 
1
2
df["Status"] = df["Status"].astype("category")
df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True)

处理数据

既然我们建立数据透视表,我觉得最容易的方法就是一步一个脚印地进行。添加项目和检查每一步来验证你正一步一步得到期望的结果。为了查看什么样的外观最能满足你的需要,就不要害怕处理顺序和变量的繁琐。

最简单的透视表必须有一个数据帧和一个索引。在本例中,我们将使用“Name(名字)”列作为我们的索引。

 
 
1
pd.pivot_table(df,index=["Name"])

此外,你也可以有多个索引。实际上,大多数的pivot_table参数可以通过列表获取多个值。

 
 
1
pd.pivot_table(df,index=["Name","Rep","Manager"])

这样很有趣但并不是特别有用。我们可能想做的是通过将“Manager”和“Rep”设置为索引来查看结果。要实现它其实很简单,只需要改变索引就可以。

 
 
1
pd.pivot_table(df,index=["Manager","Rep"])

可以看到,透视表比较智能,它已经开始通过将“Rep”列和“Manager”列进行对应分组,来实现数据聚合和总结。那么现在,就让我们共同看一下数据透视表可以为我们做些什么吧。

为此,“Account”和“Quantity”列对于我们来说并没什么用。所以,通过利用“values”域显式地定义我们关心的列,就可以实现移除那些不关心的列。

 
 
1
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"])

“Price”列会自动计算数据的平均值,但是我们也可以对该列元素进行计数或求和。要添加这些功能,使用aggfunc和np.sum就很容易实现。

 
 
1
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"],aggfunc=np.sum)

aggfunc可以包含很多函数,下面就让我们尝试一种方法,即使用numpy中的函数mean和len来进行计数。

 
 
1
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"],aggfunc=[np.mean,len])

如果我们想通过不同产品来分析销售情况,那么变量“columns”将允许我们定义一个或多个列。

列vs.值

我认为pivot_table中一个令人困惑的地方是“columns(列)”和“values(值)”的使用。记住,变量“columns(列)”是可选的,它提供一种额外的方法来分割你所关心的实际值。然而,聚合函数aggfunc最后是被应用到了变量“values”中你所列举的项目上。

 
 
1
2
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"],
               columns=["Product"],aggfunc=[np.sum])

然而,非数值(NaN)有点令人分心。如果想移除它们,我们可以使用“fill_value”将其设置为0。

 
 
1
2
pd.pivot_table(df,index=["Manager","Rep"],values=["Price"],
               columns=["Product"],aggfunc=[np.sum],fill_value=0)

其实,我觉得添加“Quantity”列将对我们有所帮助,所以将“Quantity”添加到“values”列表中。

 
 
1
2
pd.pivot_table(df,index=["Manager","Rep"],values=["Price","Quantity"],
               columns=["Product"],aggfunc=[np.sum],fill_value=0)

有趣的是,你可以将几个项目设置为索引来获得不同的可视化表示。下面的代码中,我们将“Product”从“columns”中移除,并添加到“index”变量中。

 
 
1
2
pd.pivot_table(df,index=["Manager","Rep","Product"],
               values=["Price","Quantity"],aggfunc=[np.sum],fill_value=0)

对于这个数据集,这种显示方式看起来更有意义。不过,如果我想查看一些总和数据呢?“margins=True”就可以为我们实现这种功能。

 
 
1
2
3
pd.pivot_table(df,index=["Manager","Rep","Product"],
               values=["Price","Quantity"],
               aggfunc=[np.sum,np.mean],fill_value=0,margins=True)

下面,让我们以更高的管理者角度来分析此渠道。根据我们前面对category的定义,注意现在“Status”是如何排序的。

 
 
1
2
pd.pivot_table(df,index=["Manager","Status"],values=["Price"],
               aggfunc=[np.sum],fill_value=0,margins=True)

一个很方便的特性是,为了对你选择的不同值执行不同的函数,你可以向aggfunc传递一个字典。不过,这样做有一个副作用,那就是必须将标签做的更加简洁才行。

 
 
1
2
pd.pivot_table(df,index=["Manager","Status"],columns=["Product"],values=["Quantity","Price"],
               aggfunc={"Quantity":len,"Price":np.sum},fill_value=0)

此外,你也可以提供一系列的聚合函数,并将它们应用到“values”中的每个元素上。

 
 
1
2
3
table = pd.pivot_table(df,index=["Manager","Status"],columns=["Product"],values=["Quantity","Price"],
               aggfunc={"Quantity":len,"Price":[np.sum,np.mean]},fill_value=0)
table

也许,同一时间将这些东西全都放在一起会有点令人望而生畏,但是一旦你开始处理这些数据,并一步一步地添加新项目,你将能够领略到它是如何工作的。我一般的经验法则是,一旦你使用多个“grouby”,那么你需要评估此时使用透视表是否是一种好的选择。

高级透视表过滤

一旦你生成了需要的数据,那么数据将存在于数据帧中。所以,你可以使用自定义的标准数据帧函数来对其进行过滤。

如果你只想查看一个管理者(例如Debra Henley)的数据,可以这样:

 
 
1
table.query('Manager == ["Debra Henley"]')

我们可以查看所有的暂停(pending)和成功(won)的交易,代码如下所示:

 
1
table.query('Status == ["pending","won"]')

这是pivot_table中一个很强大的特性,所以一旦你得到了你所需要的pivot_table格式的数据,就不要忘了此时你就拥有了pandas的强大威力。

The full notebook is available if you would like to save it as a reference.

如果你想将其保存下来作为参考,那么这里提供完整的笔记

备忘单

为了试图总结所有这一切,我已经创建了一个备忘单,我希望它能够帮助你记住如何使用pandas的pivot_table。

Pandas透视表(pivot_table)详解的更多相关文章

  1. Python中pandas透视表pivot_table功能详解(非常简单易懂)

    一文看懂pandas的透视表pivot_table 一.概述 1.1 什么是透视表? 透视表是一种可以对数据动态排布并且分类汇总的表格格式.或许大多数人都在Excel使用过数据透视表,也体会到它的强大 ...

  2. pandas 透视表 pivot_table

    The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. It takes a num ...

  3. 使用透视表pivot_table

    使用透视表pivot_table 功能:从一张大而全的表格中提取出我们需要的信息来分析 import pandas as pd unames = ['user_id', 'gender', 'age' ...

  4. oracle表分区详解

    原文来自:http://www.cnblogs.com/leiOOlei/archive/2012/06/08/2541306.html oracle表分区详解 从以下几个方面来整理关于分区表的概念及 ...

  5. Oracle表空间详解

    Oracle表空间详解 1.表空间的分类 Oracle数据库把表空间分为两类:系统表空间和非系统表空间. 1.1系统表空间指的是数据库系统创建时需要的表空间,这些表空间在数据库创建时自动创建,是每个数 ...

  6. SQL Server表分区详解

    原文:SQL Server表分区详解 什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆 ...

  7. [转帖]Windows注册表内容详解

    Windows注册表内容详解 来源:http://blog.sina.com.cn/s/blog_4d41e2690100q33v.html 对 windows注册表一知半解 不是很清晰 这里学习一下 ...

  8. ORACLE结构体系篇之表空间详解.md

    表空间详解一.系统表空间SYSTEM 表空间是Oracle 数据库最重要的一个表空间,存放了一些DDL 语言产生的信息以及PL/SQL 包.视图.函数.过程等,称之为数据字典,因此该表空间也具有其特殊 ...

  9. (转)Mysql 多表查询详解

    MySQL 多表查询详解 一.前言  二.示例 三.注意事项 一.前言  上篇讲到mysql中关键字执行的顺序,只涉及了一张表:实际应用大部分情况下,查询语句都会涉及到多张表格 : 1.1 多表连接有 ...

随机推荐

  1. PC平台的SIMD支持检测

    如果我们希望在用SIMD来提升程序处理的性能,首先需要做的就是检测程序所运行的平台是否支持相应的SIMD扩展.平台对SIMD扩展分为两部分的支持: CPU对SIMD扩展的支持.SIMD扩展是随着CPU ...

  2. Nginx geo模块

    geo 模块默认编译进nginx 可以通过--without-http_geo_module禁用 Syntax: geo [$address] $variable { ... } Default: — ...

  3. python基础数据类型—int、bool、字符串的常用方法

    1.int int为整型数据,主要用于计算和类型转化(将字符串转为数字) 常用方法 #bit_length()当用二进制表示数字时所用最少位数,如下十进制数12用二进制表示是1100(bin),所以# ...

  4. Linux服务器下安装vmware虚拟机

    安装包 1.VMware 14 https://dl-sh-ctc-2.pchome.net/08/b7/VMware-Workstation-Full-14.1.3-9474260.x86_64.b ...

  5. Node<T> 的作用

    Java中常见到以下定义的类 public class Node<T> { T data; public Node<T> next; Node(T data) { this.d ...

  6. python3 字符串str

    字符串使用单引号或双引号表示: 是不可变的,当一个字符串被创建后,它始终不会被改变: 可以被迭代,也可以被切片: +拼接字符串,*重复输出字符串: 格式符%s,%d,%f u'字符串:Unicode格 ...

  7. 每天一个linux命令(1):wc命令

    Linux系统中的wc(Word Count)命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 1.命令格式: wc [选项]文件... 2.命令功能: 统计指定文件中的字节数. ...

  8. 【Linux】Linux系统中的权限详解

    我们linux服务器上有严格的权限等级,如果权限过高导致误操作会增加服务器的风险.所以对于了解linux系统中的各种权限及要给用户,服务等分配合理的权限十分重要. 一.文件基本权限 首先看下linux ...

  9. hdu 3746 Cyclic Nacklace(kmp最小循环节)

    Problem Description CC always becomes very depressed at the end of this month, he has checked his cr ...

  10. hdu3038How Many Answers Are Wrong(带权并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 题解转载自:https://www.cnblogs.com/liyinggang/p/53270 ...