python数字图像处理---噪声的应用
数字图像的随机噪声在图像处理中有着重要的位置,今天用到了,就回顾一下。做个总结。
随机噪声很多种,最常用的一般有两种,高斯噪声和椒盐噪声,下面我们就针对这两种噪声做个科普。
高斯噪声:高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声与椒盐噪声相似(Salt And Pepper Noise),高斯噪声(gauss noise)也是数字图像的一个常见噪声。椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。
正如上面的简介我们只要实现一个随机矩阵,矩阵中值总体来说符合高斯分布,与原图像想加,就可以实现高斯噪声了,python中的random提供了产生高斯随机数的方法,但是numpy提供了直接生成随机高斯矩阵的方法。
我们这里使用numpy即可 gauss = np.random.normal(mean,sigma,(row,col,ch))
因此我们可以得出产生高斯噪声的方式 def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8)
图像结果:

椒盐噪声:相比高斯噪声,椒盐噪声的概念非常简单,即在图像中随机选点,使其为0或255。
实现代码:
def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out
图片效果:

总体代码:
import cv2
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.stats def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8) def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
#num_pepper = np.ceil(amount * image.size * (2. - s_vs_p))
num_pepper = np.ceil(amount * image.size * (1 - 0.5))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out apple = cv2.imread("girl8.jpg")
apple = cv2.resize(cv2.cvtColor(apple,cv2.COLOR_BGR2RGB),(400,800))
#plt.imshow(apple)
plt.imshow(GaussieNoisy(apple,25))
#plt.imshow(spNoisy(apple,25))
plt.savefig('girl_gs.jpg')
plt.axis("off")
plt.show()
参考文档:
1 https://www.cnblogs.com/lynsyklate/p/8047510.html
python数字图像处理---噪声的应用的更多相关文章
- python数字图像处理(17):边缘与轮廓
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...
- 「转」python数字图像处理(18):高级形态学处理
python数字图像处理(18):高级形态学处理 形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- 初始----python数字图像处理--:环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- python数字图像处理(二)关键镜头检测
镜头边界检测技术简述 介绍 作为视频最基本的单元帧(Frame),它的本质其实就是图片,一系列帧通过某种顺序组成在一起就构成了视频.镜头边界是视频相邻两帧出现了某种意义的变化,即镜头边界反映了视频内容 ...
- python数字图像处理(五) 图像的退化和复原
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...
- python数字图像处理(三)边缘检测常用算子
在该文将介绍基本的几种应用于边缘检测的滤波器,首先我们读入saber用来做为示例的图像 #读入图像代码,在此之前应当引入必要的opencv matplotlib numpy saber = cv2.i ...
- python数字图像处理(19):骨架提取与分水岭算法
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. m ...
- python数字图像处理(10):图像简单滤波
对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子 ...
随机推荐
- Skipping acquire of configured file ···doesn't support architecture 'i386' acquire of configured file
系统更新的时候报错: Skipping acquire of configured file 'main/binary-i386/Packages' as repository 'http://rep ...
- Java Swing实现展示数据,以及过滤排序
public class RelationCostctrTable extends DefaultTableModel { public RelationCostctrTable(Vector< ...
- arr.sort()
var ary = [12,2,0,15,32,125,52,63,45,24]; /* * sort实现原理 每一次拿出数组中的当前项和后一项,每一次这样的操作都会让传递的匿名函数执行一次,不仅执行 ...
- Maven 的这 7 个问题你思考过没有?
在如今的互联网项目开发当中,特别是Java领域,可以说Maven随处可见.Maven的仓库管理.依赖管理.继承和聚合等特性为项目的构建提供了一整套完善的解决方案,可以说如果你搞不懂Maven,那么一个 ...
- java32
1.抽象类必须有子类才有意义 2.子类中会默认有构造器来调用父类的构造器 3.接口:表示一种规范 interface 接口名(命名规则:在名称前加上I后加上able){ } -2接口也生成对应的字节码 ...
- docker私库Harbor部署(转载)
系统环境 centos7.3docker-ce docker version: 18.03.0docker-compose version: 1.21.0 Install Docker CE 安装依赖 ...
- 《MySQL必知必会》官方提供的数据库和表
数据用于配合<MySQL必知必会>(MySQL Crash Course)这本书使用,配套SQL文件也可在Ben Forta网站下载. Ben Forta网址:http://forta.c ...
- Selenium+PyCharm环境搭建
一.首先安装python并配置好环境变量 二.安装selenium 安装文件夹在安装的python文件夹下,例:D:\Program\python\Lib\site-packages\selenium ...
- Spring资源加载器抽象和缺省实现 -- ResourceLoader + DefaultResourceLoader(摘)
概述 对于每一个底层资源,比如文件系统中的一个文件,classpath上的一个文件,或者一个以URL形式表示的网络资源,Spring 统一使用 Resource 接口进行了建模抽象,相应地,对于这些资 ...
- 转发:RSA实现JS前端加密,PHP后端解密
web前端,用户注册与登录,不能直接以明文形式提交用户密码,容易被截获,这时就引入RSA. 前端加密 需引入4个JS扩展文件,jsbn.js.prng4.js.rng.js和rsa.js. <h ...