「SCOI2016」妖怪

玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水

首先要最小化

\[\max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i
\]

\(k\)是大于0的正实数

最大值显然在上凸包上,先把上凸包搞出来

然后每个点成为最大值时,\(k\)都有个取值范围(就是它左边或者右边的点成为最大值时)

然后对每个点用均值不等式得到最小值为

\[\begin{aligned}
z&=kx+\frac{1}{k}y+x+y\\
&\ge2\sqrt{xy}+x+y\\
\end{aligned}
\]

在\(kx=\frac{y}{k}\)取到最小值,即\(k=\sqrt{\frac{y}{x}}\)

然后这个点成为最大值时,可能取到最小值的就两个端点和这个最小值点(如果这个最小值可以取的话)

最开始我没注意可以不等式,随便取了个\(k=\frac{y}{x}\),居然也过了,真神奇


Code:

#include <cstdio>
#include <cmath>
#include <algorithm>
using std::min;
const int N=1e6+10;
const double eps=1e-8;
struct Vector
{
double x,y;
Vector(){}
Vector(double X,double Y){x=X,y=Y;}
Vector friend operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
bool friend operator <(Vector a,Vector b){return fabs(a.x-b.x)<eps?a.y>b.y:a.x<b.x;}
}bee[N],s[N];
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
int n,tot;
double get(Vector a,Vector b)
{
double k=(b.y-a.y)/(b.x-a.x);
if(fabs(k)<eps) return -eps;
if(1/fabs(k)<eps) return -1/eps;
return k;
}
double cal(double k,Vector a)
{
if(k<eps) return 1e18;
return (1+k)*a.x+(1+1/k)*a.y;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf%lf",&bee[i].x,&bee[i].y);
std::sort(bee+1,bee+1+n);
bee[++n]=Vector(0,bee[1].y);
++n,bee[n]=Vector(bee[n-2].x,0);
std::sort(bee+1,bee+1+n);
for(int i=1;i<=n;i++)
{
while(tot>1&&Cross(bee[i]-s[tot],s[tot]-s[tot-1])<0) --tot;
s[++tot]=bee[i];
}
double ans=1e18;
for(int i=2;i<tot;i++)
{
double kl=-get(s[i],s[i-1]),kr=-get(s[i+1],s[i]),k=sqrt(s[i].x/s[i].y);
ans=min(ans,min(cal(kl,s[i]),cal(kr,s[i])));
if(kl<=k&&k<=kr)
ans=min(ans,cal(k,s[i]));
}
printf("%.4f\n",ans);
return 0;
}

2019.3.5

「SCOI2016」妖怪 解题报告的更多相关文章

  1. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  2. 「SCOI2016」美味 解题报告

    「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果 ...

  3. 「SCOI2016」萌萌哒 解题报告

    「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^ ...

  4. loj#2015. 「SCOI2016」妖怪 凸函数/三分

    题目链接 loj#2015. 「SCOI2016」妖怪 题解 对于每一项展开 的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\) 令$T = \frac{ ...

  5. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  6. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  7. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  8. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  9. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

随机推荐

  1. IdentityServer4【Introduction】之概括

    The Big Picture 大多数现代应用看起来都像下面的样子: 大多数的交互是下面这样: 浏览器与web应用之间的通信 web应用和web APIs之间的通信(这两者有时是独立的,有时是有用户参 ...

  2. [转帖]Docker容器CPU、memory资源限制

    Docker容器CPU.memory资源限制 https://www.cnblogs.com/zhuochong/p/9728383.html 处理事项内容等 这一块内容感觉 不清楚.. 背景 在使用 ...

  3. Jenkins整合SonarQube代码检测工具

    借鉴博客:https://blog.csdn.net/kefengwang/article/details/54377055 上面这博客写得挺详细的,挺不错.它这个博客没有提供下载的教程,这个博客提供 ...

  4. Day3-1 函数

    定义: 函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 语法: def calc(x, y): ...

  5. 创建安全客户端Socket

    SocketFactory factory = SSLSocketFactory.getDefault(); Socket socket = factory.create("localhos ...

  6. DNS 到底怎么工作的? (How does dns work?)

    其实这个问题每次看的时候都觉得很明白,但是很久之后就忘记了,所以这次准备记录下来.深入到这个过程的各个细节之中,以后多看看. Step 1 请求缓存信息: 当你在开始访问一个 www.baidu.co ...

  7. kibana简单使用——elaticsearch的文档,索引的CRUD操作

    1.初始化索引: #number_of_shards:分片的数量,mo'ren默认为5 #number_of_replicas:副本副本的副本的数量 #shards一旦设置不能修改 PUT lagou ...

  8. vs code的快捷方式

    https://blog.csdn.net/qq_41308027/article/details/83178526

  9. 获取网络图片并显示在picturbox上,byte[]数组转换成Image:

    private void getWebPicture_Click(object sender, EventArgs e) { WebRequest request = WebRequest.Creat ...

  10. 包packages

    packages里面如何跨模块导入路径: print(dir()) 可以看到__file__ print(os.path.abspaht(__file__)) 可以看到当前绝对路径 import sy ...