「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪
玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水
首先要最小化
\]
\(k\)是大于0的正实数
最大值显然在上凸包上,先把上凸包搞出来
然后每个点成为最大值时,\(k\)都有个取值范围(就是它左边或者右边的点成为最大值时)
然后对每个点用均值不等式得到最小值为
z&=kx+\frac{1}{k}y+x+y\\
&\ge2\sqrt{xy}+x+y\\
\end{aligned}
\]
在\(kx=\frac{y}{k}\)取到最小值,即\(k=\sqrt{\frac{y}{x}}\)
然后这个点成为最大值时,可能取到最小值的就两个端点和这个最小值点(如果这个最小值可以取的话)
最开始我没注意可以不等式,随便取了个\(k=\frac{y}{x}\),居然也过了,真神奇
Code:
#include <cstdio>
#include <cmath>
#include <algorithm>
using std::min;
const int N=1e6+10;
const double eps=1e-8;
struct Vector
{
double x,y;
Vector(){}
Vector(double X,double Y){x=X,y=Y;}
Vector friend operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
bool friend operator <(Vector a,Vector b){return fabs(a.x-b.x)<eps?a.y>b.y:a.x<b.x;}
}bee[N],s[N];
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
int n,tot;
double get(Vector a,Vector b)
{
double k=(b.y-a.y)/(b.x-a.x);
if(fabs(k)<eps) return -eps;
if(1/fabs(k)<eps) return -1/eps;
return k;
}
double cal(double k,Vector a)
{
if(k<eps) return 1e18;
return (1+k)*a.x+(1+1/k)*a.y;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf%lf",&bee[i].x,&bee[i].y);
std::sort(bee+1,bee+1+n);
bee[++n]=Vector(0,bee[1].y);
++n,bee[n]=Vector(bee[n-2].x,0);
std::sort(bee+1,bee+1+n);
for(int i=1;i<=n;i++)
{
while(tot>1&&Cross(bee[i]-s[tot],s[tot]-s[tot-1])<0) --tot;
s[++tot]=bee[i];
}
double ans=1e18;
for(int i=2;i<tot;i++)
{
double kl=-get(s[i],s[i-1]),kr=-get(s[i+1],s[i]),k=sqrt(s[i].x/s[i].y);
ans=min(ans,min(cal(kl,s[i]),cal(kr,s[i])));
if(kl<=k&&k<=kr)
ans=min(ans,cal(k,s[i]));
}
printf("%.4f\n",ans);
return 0;
}
2019.3.5
「SCOI2016」妖怪 解题报告的更多相关文章
- 「SCOI2016」围棋 解题报告
「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...
- 「SCOI2016」美味 解题报告
「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果 ...
- 「SCOI2016」萌萌哒 解题报告
「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^ ...
- loj#2015. 「SCOI2016」妖怪 凸函数/三分
题目链接 loj#2015. 「SCOI2016」妖怪 题解 对于每一项展开 的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\) 令$T = \frac{ ...
- 「ZJOI2016」旅行者 解题报告
「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- 「HAOI2018」染色 解题报告
「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...
随机推荐
- 【学习总结】Git学习-参考廖雪峰老师教程三-创建版本库
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- HDU 2006 求奇数的乘积
http://acm.hdu.edu.cn/showproblem.php?pid=2006 Problem Description 给你n个整数,求他们中所有奇数的乘积. Input 输入数据包 ...
- 转:Linux下查看tomcat占用端口
https://blog.csdn.net/liufuwu1/article/details/71123597[root@server-crm mysql]# ps -ef | grep " ...
- Mysql 5.7 Windows 版本(zip)的安装简单过程
1. 下载zip包 https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.25-winx64.zip 2. 找一个目录解压缩 3. 简单进行安装: ...
- PreparedStatement和Statement
1 . PreparedStatement 接口继承 Statement , PreparedStatement 实例包含已编译的 SQL 语句,所以其执行速度要快于 Statement 对象. 2 ...
- Python--文件、文件夹、压缩包、处理模块shutil
高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length])将文件内容拷贝到另一个文件中 1 import shutil 2 3 shuti ...
- python爬虫之git的使用(github的使用)
上面博文中我们简单的了解了一下基本的git操作,但是我们都是将代码放到了本地的仓库里面,但是如果我们是一个团队开发的话,肯定不会放到每个人的本地,必须得有个统一的地方存放代码,国外的大家都在使用git ...
- 如何在cmd中集成git
1.要在cmd中集成git,要解决在cmd中输入git命令时不提示git不是内部或外部命令: 即需要将git添加到path变量中,即将D:\Git\mingw64\bin和D:\Git\mingw64 ...
- ECS配置lamp环境
1.安装apache 1.1 安装apache [root@nmserver-7 ~]# yum install httpd httpd-devel 1.2 启动apache服务 [root@nmse ...
- 待解决ava.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method)
java.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method) at ja ...