设f[i][j]表示以i位置为第一个序列的结尾,第一个序列的长度为j,第二个序列的结尾的最小值

那么对于f[i][j],有转移$f[i+1][j+1]=min\{f[i+1][j+1],f[i][j]\}$;$f[i+1][i-j+1]=min\{f[i+1][i-j+1],a[i+1]\}$,如果能满足递增的话

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
const int maxn=2e3+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int M,N,a[maxn],tmp[maxn],f[maxn][maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
for(M=rd();M;M--){
N=rd();
for(i=;i<=N;i++) a[i]=tmp[i]=rd();
sort(tmp+,tmp+N+);int m=unique(tmp+,tmp+N+)-tmp;
for(i=;i<=N;i++)
a[i]=lower_bound(tmp+,tmp+m,a[i])-tmp;
CLR(f,);
f[][]=;
for(i=;i<N;i++){
for(j=;j<m;j++){
if(a[i+]>f[i][j]) f[i+][i+-j]=min(f[i+][i+-j],a[i]);
if(a[i+]>a[i]) f[i+][j+]=min(f[i+][j+],f[i][j]);
}
}
if(f[N][N>>]<=1e8) printf("Yes!\n");
else printf("No!\n");
}
return ;
}

luogu4728 双递增序列 (dp)的更多相关文章

  1. [luogu4728 HNOI2009] 双递增序列 (dp)

    传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...

  2. 【BZOJ1489】[HNOI2009]双递增序列(动态规划)

    [BZOJ1489][HNOI2009]双递增序列(动态规划) 题面 BZOJ 洛谷 题解 这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二 ...

  3. [HNOI2009]双递增序列(动态规划,序列dp)

    感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设 ...

  4. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  5. BZOJ 1489: [HNOI2009]双递增序( dp )

    dp(i, j)表示选第i个, 且当前序列长度为j, 另一个序列的最后一个元素的最小值...然后根据上一个是哪个序列选的讨论一下就行了...奇怪的dp... --------------------- ...

  6. P4728 [HNOI2009]双递增序列

    题意 这个DP状态有点神. 首先考虑一个最暴力的状态:\(f_{i,j,k,u}\)表示第一个选了\(i\)个,第二个选了\(j\)个,第一个结尾为\(k\),第二个结尾为\(u\)是否可行. 现在考 ...

  7. [HNOI2009]双递增序列

    不难发现本题贪心是不好做的,可以考虑 \(dp\). 首先的一个想法就是令 \(dp_{i, j, k, l}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,当前第一个 ...

  8. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. XHXJ's LIS HDU - 4352 最长递增序列&数位dp

    代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...

随机推荐

  1. 社交CRM SCRM

    社交CRM - 国际版 Binghttps://cn.bing.com/search?FORM=U227DF&PC=U227&q=%E7%A4%BE%E4%BA%A4CRM 社交CRM ...

  2. JEECG 不同(角色的)人对同样的字段数据,使用不同的字段验证规则

    JEECG智能开发平台v3 开发指南http://www.jeecg.org/book/jeecg_v3.html jeecg: JEECG是一款基于代码生成器的J2EE快速开发平台,开源界“小普元” ...

  3. 11 The superlative

    1 最高级用来表明三个或更多事物之间的关系.最高级是通过在形容词之前加 "the" 并在之后加 "-est",或在形容词之前加 "the most&q ...

  4. Oracle 用户管理与权限分配

    用户管理是系统管理员最基本的任务之一,用户想要连接数据库并且使用相应的系统资源就必须是系统的合法用户且具有对应的权限. 1 创建用户 default tablespace default_tables ...

  5. [转帖]wifi 4G 和 蓝牙的区别

    作者:沈万马链接:https://www.zhihu.com/question/64739486/answer/225227838来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  6. HDU 2459 Maximum repetition substring

    题目:Maximum repetition substring 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2459 题意:给你一个字符串,求连续重复出现 ...

  7. 将选中项的value值赋给select的title

    $('select').change(function () { $(this).attr("title",$(this).find("option:selected&q ...

  8. CLOUD流程设置

    流程-反写规则 允许超额

  9. 腾讯机试题 AcWing 603 打怪兽

    题目链接:https://www.acwing.com/problem/content/605/ 题目大意: 略 分析: 用dp[i][j]表示用j元钱能在前i只怪兽上所能贿赂到的最大武力值. 有一种 ...

  10. hadoop第一个例子

    Java.io.URL 1.编写java程序 package com.company; import java.io.IOException; import java.io.InputStream; ...