luogu4728 双递增序列 (dp)
设f[i][j]表示以i位置为第一个序列的结尾,第一个序列的长度为j,第二个序列的结尾的最小值
那么对于f[i][j],有转移$f[i+1][j+1]=min\{f[i+1][j+1],f[i][j]\}$;$f[i+1][i-j+1]=min\{f[i+1][i-j+1],a[i+1]\}$,如果能满足递增的话
#include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
const int maxn=2e3+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int M,N,a[maxn],tmp[maxn],f[maxn][maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
for(M=rd();M;M--){
N=rd();
for(i=;i<=N;i++) a[i]=tmp[i]=rd();
sort(tmp+,tmp+N+);int m=unique(tmp+,tmp+N+)-tmp;
for(i=;i<=N;i++)
a[i]=lower_bound(tmp+,tmp+m,a[i])-tmp;
CLR(f,);
f[][]=;
for(i=;i<N;i++){
for(j=;j<m;j++){
if(a[i+]>f[i][j]) f[i+][i+-j]=min(f[i+][i+-j],a[i]);
if(a[i+]>a[i]) f[i+][j+]=min(f[i+][j+],f[i][j]);
}
}
if(f[N][N>>]<=1e8) printf("Yes!\n");
else printf("No!\n");
}
return ;
}
luogu4728 双递增序列 (dp)的更多相关文章
- [luogu4728 HNOI2009] 双递增序列 (dp)
传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...
- 【BZOJ1489】[HNOI2009]双递增序列(动态规划)
[BZOJ1489][HNOI2009]双递增序列(动态规划) 题面 BZOJ 洛谷 题解 这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二 ...
- [HNOI2009]双递增序列(动态规划,序列dp)
感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设 ...
- [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp
博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...
- BZOJ 1489: [HNOI2009]双递增序( dp )
dp(i, j)表示选第i个, 且当前序列长度为j, 另一个序列的最后一个元素的最小值...然后根据上一个是哪个序列选的讨论一下就行了...奇怪的dp... --------------------- ...
- P4728 [HNOI2009]双递增序列
题意 这个DP状态有点神. 首先考虑一个最暴力的状态:\(f_{i,j,k,u}\)表示第一个选了\(i\)个,第二个选了\(j\)个,第一个结尾为\(k\),第二个结尾为\(u\)是否可行. 现在考 ...
- [HNOI2009]双递增序列
不难发现本题贪心是不好做的,可以考虑 \(dp\). 首先的一个想法就是令 \(dp_{i, j, k, l}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,当前第一个 ...
- 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- XHXJ's LIS HDU - 4352 最长递增序列&数位dp
代码+题解: 1 //题意: 2 //输出在区间[li,ri]中有多少个数是满足这个要求的:这个数的最长递增序列长度等于k 3 //注意是最长序列,可不是子串.子序列是不用紧挨着的 4 // 5 // ...
随机推荐
- 注入技术--LSP劫持注入
1.原理 简单来说,LSP就是一个dll程序. 应用程序通过winsock2进行网络通信时,会调用ws2_32.dll的导出函数,如connect,accept等. 而后端通过LSP实现这些函数的底层 ...
- Jmeter监控服务器笔记
Jmeter监控服务器-CPU,Memory,Disk,Network性能指标 本文主要说一下如何通过JMeter插件来监控服务器CPU.内存.磁盘.网络等相关资源. 一.下载 首先进入网址https ...
- java核心API学习
1:java.lang (Object.String.StringBuffer.Thread.System.ClassLoader.Class.Runtime.包装类等)
- js中style,currentStyle和getComputedStyle的区别以及获取css样式操作方法
用js的style只能获取元素的内联样式,内部样式和外部样式使用style是获取不到的. currentStyle可以弥补style的不足(可获取内联样式,内部样式和外部样式),但是只适用于IE. g ...
- 剑指offer(8)
题目: 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 思路: 第一反应想到的是把数右移,每一位与1相与,然后判断个数,但是若输入的为负数,会出现死循环现象. 所以我们设置一个标志量 ...
- Mapper动态代理方式
开发规范 Mapper接口开发方法只需要程序员编写Mapper接口(相当于Dao接口),由Mybatis框架根据接口定义创建接口的动态代理对象,代理对象的方法体同Dao接口实现类方法. Mapper接 ...
- zabbix-2.4.5的安装配置与使用
系统最小化安装 环境: zabbix_server 12.1.1.1 zabbix_agent 12.1.1.2 zabbix_proxy 12.1.1.3 1.安装环境: ...
- python设计模式第五天【单例模式】
1. 定义 一个类只有一个实例,提供访问该实例的全局方法 2.应用场景 (1)多线程之间共享对象资源 (2)整个程序空间中的全局变量,共享资源 (3)大规模程序的节省创建对象的时间 3.代码实现(使用 ...
- How to install Windows 7 SP1 on Skylake
Download gigabyte windows usb installation tool http://www.gigabyte.cn/WebPage/-79/usb.html get Wind ...
- 自定义 ASP.NET Identity Data Model with EF
One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...