梯度提升:

from sklearn.ensemble import GradientBoostingClassifier
gb=GradientBoostingClassifier(random_state=0)
gb.fit(x_train,y_train)
print("Accuracy on training set:{:.3f}".format(gb.score(x_train,y_train)))
print("Accuracy on test set:{:.3f}".format(gb.score(x_test,y_test)))

Accuracy on training set:0.917

Accuracy on test set:0.792

我们可能是过拟合了。为了降低这种过拟合,我们可以通过限制最大深度或降低学习速率来进行更强的修剪:

gb1=GradientBoostingClassifier(random_state=0,max_depth=1)
gb1.fit(x_train,y_train)
print("Accuracy on training set:{:.3f}".format(gb1.score(x_train,y_train)))
print("Accuracy on test set:{:.3f}".format(gb1.score(x_test,y_test)))

Accuracy on training set:0.804

Accuracy on test set:0.781

gb2=GradientBoostingClassifier(random_state=0,learning_rate=0.01)
gb2.fit(x_train,y_train)
print("Accuracy on training set:{:.3f}".format(gb2.score(x_train,y_train)))
print("Accuracy on test set:{:.3f}".format(gb2.score(x_test,y_test)))

Accuracy on training set:0.802

Accuracy on test set:0.776

如我们所期望的,两种降低模型复杂度的方法都降低了训练集的准确度。可是测试集的泛化性能并没有提高。

尽管我们对这个模型的结果不是很满意,但我们还是希望通过特征重要度的可视化来对模型做更进一步的了解。

plot_feature_importances_diabetes(gb1)

我们可以看到,梯度提升树的特征重要度与随机森林的特征重要度有点类似,同时它给这个模型的所有特征赋了重要度值。

支持向量机:

from sklearn.svm import SVC
svc=SVC()
svc.fit(x_train,y_train)
print("Accuracy on training set:{:.2f}".format(svc.score(x_train,y_train)))
print("Accuracy on test set:{:.2f}".format(svc.score(x_test,y_test)))

Accuracy on training set:1.00

Accuracy on test set:0.65

这个模型过拟合比较明显,虽然在训练集中有一个完美的表现,但是在测试集中仅仅有65%的准确度。

SVM要求所有的特征要在相似的度量范围内变化。我们需要重新调整各特征值尺度使其基本上在同一量表上。

from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
x_train_scaled=scaler.fit_transform(x_train)
x_test_scaled=scaler.fit_transform(x_test) svc=SVC()
svc.fit(x_train_scaled,y_train) print("Accuracy on training set:{:.2f}".format(svc.score(x_train_scaled,y_train)))
print("Accuracy on test set:{:.2f}".format(svc.score(x_test_scaled,y_test)))

Accuracy on training set:0.77

Accuracy on test set:0.77

数据的度量标准化后效果大不同!现在我们的模型在训练集和测试集的结果非常相似,这其实是有一点过低拟合的,但总体而言还是更接近100%准确度的。这样来看,我们还可以试着提高C值或者gamma值来配适更复杂的模型。

svc=SVC(C=1000)
svc.fit(x_train_scaled,y_train) print("Accuracy on training set:{:.2f}".format(svc.score(x_train_scaled,y_train)))
print("Accuracy on test set:{:.2f}".format(svc.score(x_test_scaled,y_test)))

Accuracy on training set:0.79

Accuracy on test set:0.80

提高了C值后,模型效果确实有一定提升,测试集准确度提至79.7%。

深度学习:

from sklearn.neural_network import MLPClassifier
mlp=MLPClassifier(random_state=42)
mlp.fit(x_train,y_train) print("Accuracy on training set:{:.2f}".format(mlp.score(x_train,y_train)))
print("Accuracy on test set:{:.2f}".format(mlp.score(x_test,y_test)))

Accuracy on training set:0.71

Accuracy on test set:0.67

多层神经网络(MLP)的预测准确度并不如其他模型表现的好,这可能是数据的尺度不同造成的。深度学习算法同样也希望所有输入的特征在同一尺度范围内变化。理想情况下,是均值为0,方差为1。所以,我们必须重新标准化我们的数据,以便能够满足这些需求。

from sklearn.preprocessing import StandardScaler

scaler=StandardScaler()
x_train_scaled=scaler.fit_transform(x_train)
x_test_scaled=scaler.fit_transform(x_test) mlp=MLPClassifier(random_state=0)
mlp.fit(x_train_scaled,y_train) print("Accuracy on training set:{:.3f}".format(mlp.score(x_train_scaled,y_train)))
print("Accuracy on test set:{:.3f}".format(mlp.score(x_test_scaled,y_test)))

Accuracy on training set:0.823

Accuracy on test set:0.802

让我们增加迭代次数:

mlp=MLPClassifier(max_iter=1000,random_state=0)
mlp.fit(x_train_scaled,y_train) print("Accuracy on training set:{:.3f}".format(mlp.score(x_train_scaled,y_train)))
print("Accuracy on test set:{:.3f}".format(mlp.score(x_test_scaled,y_test)))

Accuracy on training set:0.877

Accuracy on test set:0.755

增加迭代次数仅仅提升了训练集的性能,而对测试集没有效果。

让我们调高alpha参数并且加强权重的正则化。

mlp=MLPClassifier(max_iter=1000,alpha=1,random_state=0)
mlp.fit(x_train_scaled,y_train) print("Accuracy on training set:{:.3f}".format(mlp.score(x_train_scaled,y_train)))
print("Accuracy on test set:{:.3f}".format(mlp.score(x_test_scaled,y_test)))

Accuracy on training set:0.795

Accuracy on test set:0.792

这个结果是好的,但我们无法更进一步提升测试集准确度。因此,到目前为止我们最好的模型是在数据标准化后的默认参数深度学习模型。最后,我们绘制了一个在糖尿病数据集上学习的神经网络的第一层权重热图。

plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation='none',cmap='viridis')
plt.yticks(range(8),diabetes_features)
plt.xlabel("Columns in weight matrix")
plt.ylabel("Input feature")
plt.colorbar()

从这个热度图中,快速指出哪个或哪些特征的权重较高或较低是不容易的。

设置正确的参数非常重要:

本文我们练习了很多种不同的机器学习模型来进行分类和回归,了解了它们的优缺点是什么,以及如何控制其模型复杂度。我们同样看到,对于许多算法来说,设置正确的参数对于性能良好是非常重要的。

手把手丨我们在UCL找到了一个糖尿病数据集,用机器学习预测糖尿病(三)的更多相关文章

  1. 【转】手把手教你把Vim改装成一个IDE编程环境(图文)

    手把手教你把Vim改装成一个IDE编程环境(图文) By: 吴垠 Date: 2007-09-07 Version: 0.5 Email: lazy.fox.wu#gmail.com Homepage ...

  2. POJ:1833 按字典序找到下一个排列:

    http://poj.org/problem?id=1833 按照字典的顺序(a-z) (1-9),可以得出任意两个数字串的大小.比如“123”, 最小的是“123”(从小到大),最大的是“321”( ...

  3. 一个普通的 Zepto 源码分析(三) - event 模块

    一个普通的 Zepto 源码分析(三) - event 模块 普通的路人,普通地瞧.分析时使用的是目前最新 1.2.0 版本. Zepto 可以由许多模块组成,默认包含的模块有 zepto 核心模块, ...

  4. Java集合-5. (List)已知有一个Worker 类如下: 完成下面的要求 1) 创建一个List,在List 中增加三个工人,基本信息如下: 姓名 年龄 工资 zhang3 18 3000 li4 25 3500 wang5 22 3200 2) 在li4 之前插入一个工人,信息为:姓名:zhao6,年龄:24,工资3300 3) 删除wang5 的信息 4) 利用for 循

    第六题 5. (List)已知有一个Worker 类如下: public class Worker { private int age; private String name; private do ...

  5. 给定一个字符串里面只有"R" "G" "B" 三个字符,请排序,最终结果的顺序是R在前 G中 B在后。 要求:空间复杂度是O(1),且只能遍历一次字符串。

    题目:给定一个字符串里面只有"R" "G" "B" 三个字符,请排序,最终结果的顺序是R在前 G中 B在后. 要求:空间复杂度是O(1),且 ...

  6. Linux下一个最简单的不依赖第三库的的C程序(1)

    如下代码是一段汇编代码,虽然标题中使用了C语言这个词语,但下面确实是一段汇编代码,弄清楚了这个代码,后续的知识点才会展开. simple_asm.s: #PURPOSE: Simple program ...

  7. 我的第一个netcore2.2 api项目搭建(三)续

    上一章快速陈述了自定义验证功能添加的过程,我的第一个netcore2.2 api项目搭建(三) 但是并没有真正的去实现,这一章将要实现验证功能的添加. 这一章实现目标三:jwt认证授权添加 在netc ...

  8. 好几个div(元素)找到最后一个

    <div> <div></div> <div></div> <div></div> </div> //找 ...

  9. 「Netty实战 02」手把手教你实现自己的第一个 Netty 应用!新手也能搞懂!

    大家好,我是 「后端技术进阶」 作者,一个热爱技术的少年. 很多小伙伴搞不清楚为啥要学习 Netty ,今天这篇文章开始之前,简单说一下自己的看法: @ 目录 服务端 创建服务端 自定义服务端 Cha ...

随机推荐

  1. [android] 保存文件到手机内存

    /*****************2016年5月4日 更新*******************************/ 知乎:Android 没有沙盒保护机制吗,WhatsApp 信息为何可被随 ...

  2. JAVA 多线程(4)

    接着3说: 一.String常量池 先回顾 java 的基本数据类型: 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配 ...

  3. 洛谷P4103 [HEOI2014]大工程(虚树 树形dp)

    题意 链接 Sol 虚树. 首先建出虚树,然后直接树形dp就行了. 最大最小值直接维护子树内到该节点的最大值,然后合并两棵子树的时候更新一下答案. 任意两点的路径和可以考虑每条边两边的贡献,\(d[x ...

  4. Python 基于Python实现的ssh兼sftp客户端(上)

    基于Python实现的ssh兼sftp客户端   by:授客 QQ:1033553122 实现功能 实现ssh客户端兼ftp客户端:实现远程连接,执行linux命令,上传下载文件 测试环境 Win7 ...

  5. Android为TV端助力 android 在5.0以后不允许使用隐式Intent方式来启动Service

    android5.0以后不能使用隐式intent :需要指定Intent的ComponentName信息:intent.setComponent(xxx),或指定Intent的setPackage(& ...

  6. 入手FUJIFILM X100S

    有个朋友买了,用了说很好,于是在秋叶原的yodobashi体验了好几个星期天之后,终于下定决心出手了,购入了黑色限量版,还能用优惠券减免了200美元,最后全套1200美元.黑色限量版还包括了转接环,那 ...

  7. 「Android」单例的五种写法

    单例 发现博客园可以很好的设置自己的博客文章的展示,很开心,然后特此发一篇 其实这几种写法大家应该都会的,就权当拿来记录一下吧,以后复习巩固也比较方便. 这篇文章中的代码,来自一篇视频(我想找视频贴上 ...

  8. 扩展Linux磁盘空间

    适用于虚拟机内系统HyperV/Centos7已测 先为虚拟磁盘扩容,比如10G加到20G 最好进入单用户模式:init 1 进入管理UI:fdisk -l /dev/sda依次n {new part ...

  9. 【Linux高频命令专题(24)】grep

    简述 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.grep全称是Global Regular Expression Print,表示全局正则 ...

  10. The operation could not be performed because the OLE DB provider 'SQLOLEDB' was unable to begin a distributed transaction

    今天遇到一起关于分布式事务错误的案例,如下所示,执行SQL脚本时报错, 错误信息具体如下所示: [OLE/DB provider returned message: 新事务不能登记到指定的事务处理器中 ...