[POI2012]SZA-Cloakroom
嘟嘟嘟
一道比较有意思的dp。
这题关键在于状态的设计。如果像我一样令\(dp[i][j]\)表示选到第\(i\)个物品,\(\sum c\)能都等于\(j\)的话,那就是\(O(qnk)\)了,怒拿一半分……
正解应该是令\(dp[i][j]\)表示选出的物品的\(a\)小于等于\(i\),\(\sum c\)等于\(j\)时,\(b\)的最小值的最大值。
然后我们可以离散化\(a\),再dp。
但这样会MLE……
所以还是离线吧:把询问按\(m\)排序,然后把所有小于等于\(m\)的\(a\)的物品放进去dp,于是就有\(dp[i][j] = max(dp[i][j], min(dp[i - 1][j - c[k]], b[k]))\)。
然后像背包一样省去第一维,倒着枚举。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxk = 2e5 + 5;
const int maxn = 1e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, Q, m, K, s;
struct Node
{
int a, b, c, id;
In bool operator < (const Node& oth)const
{
return a < oth.a;
}
}t[maxn], q[maxn * maxn];
int dp[maxk];
bool ans[maxn * maxn];
int main()
{
n = read();
for(int i = 1; i <= n; ++i)
t[i].c = read(), t[i].a = read(), t[i].b = read();
Q = read();
for(int i = 1; i <= Q; ++i)
q[i].a = read(), q[i].b = read(), q[i].c = read(), q[i].id = i;
sort(t + 1, t + n + 1), sort(q + 1, q + Q + 1);
dp[0] = INF;
for(int i = 1, j = 1; i <= Q; ++i)
{
while(j <= n && t[j].a <= q[i].a)
{
for(int k = 1e5; k >= t[j].c; --k)
dp[k] = max(dp[k], min(dp[k - t[j].c], t[j].b));
++j;
}
if(dp[q[i].b] > q[i].a + q[i].c) ans[q[i].id] = 1;
}
for(int i = 1; i <= Q; ++i) puts(ans[i] ? "TAK" : "NIE");
return 0;
}
[POI2012]SZA-Cloakroom的更多相关文章
- [BZOJ2794][Poi2012]Cloakroom
2794: [Poi2012]Cloakroom Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 167 Solved: 119[Submit][St ...
- 【BZOJ2794】[Poi2012]Cloakroom 离线+背包
[BZOJ2794][Poi2012]Cloakroom Description 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问 ...
- BZOJ 2794 [Poi2012]Cloakroom(离线+背包)
2794: [Poi2012]Cloakroom Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 406 Solved: 241[Submit][St ...
- BZOJ2794[Poi2012]Cloakroom——离线+背包
题目描述 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得:1. 对于每个 ...
- #13【BZOJ2794】[Poi2012]Cloakroom
题解: 感觉真是很智障..连这么简单的题都没想出来 一直在想这么做动态背包..发现不会 首先显然我们将询问按照m 序列按照a[i]排序 然后怎么满足b呢 其实很简单啊..只需要记录f[i]表示前面这些 ...
- bzoj 2794 [Poi2012]Cloakroom 离线+背包
题目大意 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]). 再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得: 对于每个选 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- 2795: [Poi2012]A Horrible Poem
2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 484 Solved: 235[Subm ...
- [BZOJ2803][Poi2012]Prefixuffix
2803: [Poi2012]Prefixuffix Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 219 Solved: 95[Submit][St ...
- [BZOJ2799][Poi2012]Salaries
2799: [Poi2012]Salaries Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 91 Solved: 54[Submit][Statu ...
随机推荐
- SpringBoot打包报错没有主清单
1,如果你的POM是继承spring-boot-starter-parent的话,只需要下面的指定就行. <properties> <!-- The main class to st ...
- Flask 系列之 SQLAlchemy
SQLAlchemy 是一种 ORM 框架,通过使用它,可以大大简化我们对数据库的操作,不用再写各种复杂的 sql语句 了. 说明 操作系统:Windows 10 Python 版本:3.7x 虚拟环 ...
- a dive in react lifecycle
背景:我在react文档里找生命周期的图,居然没有,不敢相信我是在推特上找到的... 正文 react v16.3 新生命周期: static getDerivedStateFromProps get ...
- 利用CodeDom 动态执行条件表达式
在实际需求遇到需要根据不同条件,去指定不同的不同的审批人.起初的需求倒很简单,明确是当金额 >=500000 , 可变的就是500000这个数额. 当时为了防止可能产生的变化.特意搞了 条 ...
- nodeJs express mongodb 建站(linux 版)
一.环境安装 1.安装node wget http://nodejs.org/dist/v0.12.2/node-v0.12.2-linux-x64.tar.gz //下载tar xvf node-v ...
- js 依据“;”折行
function roomIds(roomid) { // var str = roomid.replace(/;/g,'\r\n'); if (roomid) { var str = roomid. ...
- Django之django模型层一单表操作
一 ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人 ...
- JMeter Dubbo请求插件jmeter-plugin-dubbo.jar
JMeter Dubbo请求插件jmeter-plugin-dubbo.jar by:授客 QQ:1033553122 测试环境 apache-jmeter-3.2 Dubbo 2.6.2 声明 ...
- Python 利用Python操作excel表格之openyxl介绍Part2
利用Python操作excel表格之openyxl介绍 by:授客 QQ:1033553122 欢迎加入全国软件测试交流qq群(群号:7156436) ## 绘图 c = LineChart() ...
- Android为TV端助力 fragment 的用法以及与activity的交互和保存数据的方法,包括屏幕切换(转载)!
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/37992017 1.管理Fragment回退栈 类似与Android系统为Acti ...