pytorch .detach() .detach_() 和 .data用于切断反向传播
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource
当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播
1 detach()[source]
返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad。
即使之后重新将它的requires_grad置为true,它也不会具有梯度grad
这样我们就会继续使用这个新的Variable进行计算,后面当我们进行反向传播时,到该调用detach()的Variable就会停止,不能再继续向前进行传播
源码为:
def detach(self):
"""Returns a new Variable, detached from the current graph.
Result will never require gradient. If the input is volatile, the output
will be volatile too.
.. note::
Returned Variable uses the same data tensor, as the original one, and
in-place modifications on either of them will be seen, and may trigger
errors in correctness checks.
"""
result = NoGrad()(self) # this is needed, because it merges version counters
result._grad_fn = None
return result
可见函数进行的操作有:
- 将grad_fn设置为None
 将Variable的requires_grad设置为False
如果输入 volatile=True(即不需要保存记录,当只需要结果而不需要更新参数时这么设置来加快运算速度),那么返回的Variable 。(volatile=True已经弃用)volatile
注意:
返回的Variable和原始的Variable公用同一个data tensor。in-place函数修改会在两个Variable上同时体现(因为它们共享data tensor),当要对其调用backward()时可能会导致错误。
举例:
比如正常的例子是:
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid() out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.1966, 0.1050, 0.0452])
当使用detach()但是没有进行更改时,并不会影响backward():
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out) #添加detach(),c的requires_grad为False
c = out.detach()
print(c) #这时候没有对c进行更改,所以并不会影响backward()
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
可见c,out之间的区别是c是没有梯度的,out是有梯度的
如果这里使用的是c进行sum()操作并进行backward(),则会报错:
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out) #添加detach(),c的requires_grad为False
c = out.detach()
print(c) #使用新生成的Variable进行反向传播
c.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
Traceback (most recent call last):
File "test.py", line , in <module>
c.sum().backward()
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line , in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line , in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: element of tensors does not require grad and does not have a grad_fn
如果此时对c进行了更改,这个更改会被autograd追踪,在对out.sum()进行backward()时也会报错,因为此时的值进行backward()得到的梯度是错误的:
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out) #添加detach(),c的requires_grad为False
c = out.detach()
print(c)
c.zero_() #使用in place函数对其进行修改 #会发现c的修改同时会影响out的值
print(c)
print(out) #这时候对c进行更改,所以会影响backward(),这时候就不能进行backward(),会报错
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([., ., .])
tensor([., ., .], grad_fn=<SigmoidBackward>)
Traceback (most recent call last):
File "test.py", line , in <module>
out.sum().backward()
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line , in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line , in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
2 .data
如果上面的操作使用的是.data,效果会不同:
这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out) c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改 #会发现c的修改同时也会影响out的值
print(c)
print(out) #这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([., ., .])
tensor([., ., .], grad_fn=<SigmoidBackward>)
tensor([., ., .])
上面的内容实现的原理是:
In-place 正确性检查
所有的Variable都会记录用在他们身上的 in-place operations。如果pytorch检测到variable在一个Function中已经被保存用来backward,但是之后它又被in-place operations修改。当这种情况发生时,在backward的时候,pytorch就会报错。这种机制保证了,如果你用了in-place operations,但是在backward过程中没有报错,那么梯度的计算就是正确的。
⚠️下面结果正确是因为改变的是sum()的结果,中间值a.sigmoid()并没有被影响,所以其对求梯度并没有影响:
import torch a = torch.tensor([, , .], requires_grad=True)
print(a.grad)
out = a.sigmoid().sum() #但是如果sum写在这里,而不是写在backward()前,得到的结果是正确的
print(out) c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改 #会发现c的修改同时也会影响out的值
print(c)
print(out) #没有写在这里
out.backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor(2.5644, grad_fn=<SumBackward0>)
tensor(2.5644)
tensor(.)
tensor(., grad_fn=<SumBackward0>)
tensor([0.1966, 0.1050, 0.0452])
3 detach_()[source]
将一个Variable从创建它的图中分离,并把它设置成叶子variable
其实就相当于变量之间的关系本来是x -> m -> y,这里的叶子variable是x,但是这个时候对m进行了.detach_()操作,其实就是进行了两个操作:
- 将m的grad_fn的值设置为None,这样m就不会再与前一个节点x关联,这里的关系就会变成x, m -> y,此时的m就变成了叶子结点
 - 然后会将m的requires_grad设置为False,这样对y进行backward()时就不会求m的梯度
 
⚠️
这么一看其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的variable
比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的
但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了
pytorch .detach() .detach_() 和 .data用于切断反向传播的更多相关文章
- [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播
		
[源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 目录 [源码解析] PyTorch 分布式(13) ----- Distribu ...
 - PyTorch深度学习实践——反向传播
		
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性 ...
 - 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
		
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
 - pytorch中的前项计算和反向传播
		
前项计算1 import torch # (3*(x+2)^2)/4 #grad_fn 保留计算的过程 x = torch.ones([2,2],requires_grad=True) print(x ...
 - PyTorch中在反向传播前为什么要手动将梯度清零?
		
对于torch中训练时,反向传播前将梯度手动清零的理解 简单的理由是因为PyTorch默认会对梯度进行累加.至于为什么PyTorch有这样的特点,在网上找到的解释是说由于PyTorch的动态图和aut ...
 - 使用PyTorch构建神经网络以及反向传播计算
		
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...
 - [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
		
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...
 - 反向传播(BP)算法理解以及Python实现
		
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...
 - 深度学习与CV教程(4) | 神经网络与反向传播
		
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
 
随机推荐
- shell 备份 source code
			
1. 利用shell脚本备份源码 首先mkdir创建三个目录 backup存放备份代码,script 存放shell脚本,www存放源码 2.创建文件 3. 编写shell脚本 #!bin/sh b ...
 - 使用JavaScript获取URL中的参数(两种方法)
			
本文给大家分享两种方法使用js获取url中的参数,其中方法二是使用的正则表达式方法,大家可以根据需要选择比较好的方法,废话不多说了,直接看详细介绍吧. 方法一: //取url参数 var type = ...
 - Spider-four
			
计算机速度比较: CPU -> 寄存器 -> 缓存L1/L2/L3 -> 内存 -> 硬盘 -> 网卡 -> BIOS LMAP: Linux + MySQL + ...
 - 通过css改变svg img的颜色
			
需求如下图,hover的时候改变图标颜色,图标为引入的svg img 一般的解决办法有:1.字体图标改变css的color属性:2.js在hover事件中切换图片:3.老一点的方案是hover切换背景 ...
 - loj#6030. 「雅礼集训 2017 Day1」矩阵(贪心 构造)
			
题意 链接 Sol 自己都不知道自己怎么做出来的系列 不难观察出几个性质: 最优策略一定是先把某一行弄黑,然后再用这一行去覆盖不是全黑的列 无解当且仅当无黑色.否则第一个黑色所在的行\(i\)可以先把 ...
 - SAP MM 没有维护MRP 视图的物料可以正常参与采购业务
			
SAP MM 没有维护MRP 视图的物料可以正常参与采购业务 Material number: R000006872,没有维护MRP 视图,  也就是没有指定该物料来源是采购还是自制.此种情况下,S ...
 - Openlayer3中应用的技术
			
ol3-ext有很多很丰富的效果,可以不用重复造轮子,ol3-ext示例大全:http://viglino.github.io/ol3-ext/ 在本次项目中使用到了ol3-ext的两个功能:图层管理 ...
 - Python入门基础之迭代和列表生成式
			
什么是迭代 在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration). 在Python中,迭代是通过 for ...
 - Centos 7下VMware三台虚拟机Hadoop集群初体验
			
一.下载并安装Centos 7 传送门:https://www.centos.org/download/ 注:下载DVD ISO镜像 这里详解一下VMware安装中的两个过程 网卡配置 是Add ...
 - View体系之属性动画
			
(内容省略了valueAnimator和PropertyValueHolder使用) 属性动画的使用的主要方式是AnimatorSet和ObjectAnimator配合使用.ObjectAnimato ...