题意

在一个数轴上有n个集装箱,第 i 个集装箱的位置为x[i],且在集装箱内装有a[i]件货物,现在将这些集装箱内的货物进行移动(将一件货物从第 i 个集装箱移动到第 j 个集装箱的花费就为2*abs(x[i]-x[j]) ),求在总花费不超过T的情况下,最多能将多少货物移动到同一个集装箱内。

分析

既然要使得花费在不超过T的情况尽可能多的移动货物,那么我们肯定是将一个区间内的所有货物移到坐标中位的集装箱上。那么我们就可以对答案进行二分,然后枚举所要移动的区间的左端点,再找到中位点和右端点,然后判断这个区间移动的花费是否小于T。

可以预处理一下前缀和以及前缀花费、距离等。依次来计算区间的花费。

二分判断的过程中,由于最终的答案不一定是将整个区间内所有的货物都移动到一个集装箱,所以我们还要判断比需求量多的那部分是从左端点移过来的还剩从右端点移过来的,然后再根据花费的大小情况进行二分就可以得到最终答案了。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
using namespace std;
#define ll long long
const int N = 5e5 + ;
ll dis[N]; ///dis[i]表示第i个集装箱距离x=0的距离
ll num[N]; ///num[i]表示第i个集装箱有的产品个数
ll sum[N]; ///sum[i]表示第1~i个集装箱有的产品数总和
ll cost[N]; ///cost[i]表示第1~i个集装箱的所有产品移到x=0处所"获得"的费用
ll tot,q;
int n, L, R, u; ///u为产品汇总的最优点
ll cost_l(int i) {///费用=将L+1~i中所有产品移动到i处所需费用+(将i~R中所有的产品移动到i处所需的费用 - 区间L+1~R比x多的产品数从R处移动到i处的费用)
return ((sum[i] - sum[L])*dis[i] - (cost[i] - cost[L])) + ((cost[R] - cost[i]) - (sum[R] - sum[i])*dis[i] - (sum[R] - sum[L] - q)*(dis[R] - dis[i]));
}
ll cost_r(int i) {///同上,只是规则是优先从右边界开始取产品
return -((sum[R] - sum[i])*dis[i] - (cost[R] - cost[i])) - ((cost[i-] - cost[L]) - (sum[i-] - sum[L])*dis[i] + (sum[R] - sum[L] - q)*(dis[i] - dis[L+]));
}
bool check(ll &x) { ///判断需求x是否能在所给的费用t内达到
q = x;
L = , R = , u = ;
while () { ///从左边界开始向右移动区间,优先取区间左边的产品
while (R < n&&sum[R] - sum[L] < x) R++;
if (sum[R] - sum[L] < x)break; ///若是当前的L~n无法满足x,那么L++也不可能满足
while (u < L)u++;
while (u < R&&cost_l(u)>cost_l(u + ))u++;
if (cost_l(u) <= tot)return true;
L++;
}
L = n - , R = n, u = n;
while () { ///从右边界开始向左移动区间,优先取区间右边的产品
while (L > && sum[R] - sum[L] < x) L--;
if (sum[R] - sum[L] < x)break; ///若是当前的L~R无法满足x,那么R--也不可能满足
while (u > R)u--;
while (u > L && cost_r(u) > cost_r(u - ))u--;
if (cost_r(u) <= tot)return true;
R--;
}
return false;
}
int main()
{
scanf("%d%lld", &n, &tot);
tot /= ;
for (int i = ; i <= n; i++)
scanf("%lld", &dis[i]);
sum[]=cost[]=;
for (int i = ; i <= n; i++) {
scanf("%lld", &num[i]);
sum[i] = sum[i - ] + num[i];
cost[i] = cost[i - ] + num[i] * dis[i];
}
ll l = ,r = sum[n] + ;
while (l + < r) {
ll mid = (l + r) >> ;
if (check(mid)) l = mid;
else r = mid;
}
printf("%lld\n", l);
return ;
}

2018牛客网暑期ACM多校训练营(第二场)G Transform(二分)的更多相关文章

  1. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  2. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

  3. 2018 牛客网暑期ACM多校训练营(第一场) E Removal (DP)

    Removal 链接:https://ac.nowcoder.com/acm/contest/139/E来源:牛客网 题目描述 Bobo has a sequence of integers s1, ...

  4. 2018牛客网暑期ACM多校训练营(第十场)A Rikka with Lowbit (树状数组)

    链接:https://ac.nowcoder.com/acm/contest/148/A 来源:牛客网 Rikka with Lowbit 时间限制:C/C++ 5秒,其他语言10秒 空间限制:C/C ...

  5. 2018牛客网暑期ACM多校训练营(第十场)J Rikka with Nickname(二分,字符串)

    链接:https://ac.nowcoder.com/acm/contest/148/J?&headNav=acm 来源:牛客网 Rikka with Nickname 时间限制:C/C++ ...

  6. 2018牛客网暑期ACM多校训练营(第二场)J Farm(树状数组)

    题意 n*m的农场有若干种不同种类作物,如果作物接受了不同种类的肥料就会枯萎.现在进行t次施肥,每次对一个矩形区域施某种类的肥料.问最后枯萎的作物是多少. 分析 作者:xseventh链接:https ...

  7. 2018牛客网暑期ACM多校训练营(第一场)B Symmetric Matrix(思维+数列递推)

    题意 给出一个矩阵,矩阵每行的和必须为2,且是一个主对称矩阵.问你大小为n的这样的合法矩阵有多少个. 分析 作者:美食不可负064链接:https://www.nowcoder.com/discuss ...

  8. 2018牛客网暑期ACM多校训练营(第三场) A - PACM Team - [四维01背包][四约束01背包]

    题目链接:https://www.nowcoder.com/acm/contest/141/A 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  9. 2018牛客网暑期ACM多校训练营(第五场) F - take - [数学期望][树状数组]

    题目链接:https://www.nowcoder.com/acm/contest/143/F 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  10. 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]

    题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

随机推荐

  1. 【BZOJ4653】【NOI2016】区间 线段树

    题目大意 数轴上有\(n\)个闭区间\([l_1,r_1],[l_2,r_2],\ldots,[l_n,r_n]\),你要选出\(m\)个区间,使得存在一个\(x\),对于每个选出的区间\([l_i, ...

  2. 【BZOJ1426】收集邮票 期望DP

    题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...

  3. Java 枚举 的学习

    在JDK5.0之后,引进了一种与C语言相通的枚举类型. 所谓枚举类型就是指含有一组具有固定值, 并且容量有限的数据集合. 例如,定义一个星期的枚举类型, 从周一到周日是具有固定大小和固定值的集合 pu ...

  4. Zabbix使用netstat监控会话

    原文链接 TCP的连接状态对于我们web服务器来说是至关重要的,尤其是并发量ESTAB:或者是syn_recv值,假如这个值比较大的话我们可以认为是不是受到了攻击,或是是time_wait值比较高的话 ...

  5. js click 与 onclick 事件绑定,触发与解绑

    click 与 onclick 1.onclick 事件会在对象被点击时发生. <input id="btn1" type="button" onclic ...

  6. 洛谷P4774 屠龙勇士

    啊我死了. 肝了三天的毒瘤题......他们考场怎么A的啊. 大意: 给你若干个形如 的方程组,求最小整数解. 嗯......exCRT的变式. 考虑把前面的系数化掉: 然后就是exCRT板子了. 我 ...

  7. javase的网络编程(InetAddress,UDP,TCP,URL,Socket,DatagramSocket)

    通过一段时间对java网络编程相关内容的学习,写下这篇随笔,对这一部分的知识进行梳理和总结. 网络编程 一.网络编程三要素: IP地址:网络会给每个联网的主机分配一个数字的编码地址,该地址就是IP地址 ...

  8. (链表 set) leetcode 817. Linked List Components

    We are given head, the head node of a linked list containing unique integer values. We are also give ...

  9. Linux设备树(一 概述)

    一 概述 设备树(Device tree)是一套用来描述硬件属相的规则.ARM Linux采用设备树机制源于2011年3月份Linux创始人Linus Torvalds发的一封邮件,在这封邮件中他提倡 ...

  10. MySql 5.7.23安装

    1.首先上MySql的官网下载  https://dev.mysql.com/downloads/mysql/ 选择源码包: 1. 新建/usr/local/src目录,保存下载的各类安装包 1 mk ...