https://nanti.jisuanke.com/t/31719

题意

让你分别判断n或(n-1)*n/2是否是完全平方数

分析

二分高精度开根裸题呀。经典题:bzoj1213

用java套个板子求出平方根,再乘回来检验一下就好。

import java.util.*;
import java.math.*;
public class Main{
static BigInteger check(BigInteger n,BigInteger x) {
BigInteger ans=BigInteger.valueOf();
BigInteger a=BigInteger.valueOf();
for(BigInteger i=BigInteger.ZERO;i.compareTo(n)<;i=i.add(a)) {
ans=ans.multiply(x);
}
return ans;
}
static BigInteger Get(BigInteger n,BigInteger m) {//大数m开n次根
BigInteger l=BigInteger.ZERO;
BigInteger a=BigInteger.valueOf();
BigInteger b=BigInteger.valueOf();
BigInteger r=BigInteger.valueOf();
BigInteger mid=BigInteger.ZERO;
while(check(n,r).compareTo(m)<=) {
l=r;
r=r.multiply(a);
}
while(l.compareTo(r)<=) {
mid=l.add(r).divide(a);
if(check(n,mid).compareTo(m)<=) l=mid.add(b);
else r=mid.subtract(b);
}
return r;
}
public static void main(String[]args) {
int t;
Scanner sca=new Scanner(System.in);
t=sca.nextInt();
BigInteger m=new BigInteger("");
while(t--!=){
BigInteger n1=sca.nextBigInteger();
BigInteger n2=n1.multiply(n1.subtract(BigInteger.ONE)).divide(m);
BigInteger res1=Get(m,n1);
BigInteger res2=Get(m,n2);
boolean f1=false,f2=false;
if(res1.multiply(res1).compareTo(n1)==) f1=true;
if(res2.multiply(res2).compareTo(n2)==) f2=true;
if(f1&&f2){
System.out.println("Arena of Valor");
}else if(f1){
System.out.println("Hearth Stone");
}else if(f2){
System.out.println("Clash Royale");
}else{
System.out.println("League of Legends");
} }
}
}

ACM-ICPC 2018 焦作赛区网络预赛 J Participate in E-sports(大数开方)的更多相关文章

  1. 大数开方 ACM-ICPC 2018 焦作赛区网络预赛 J. Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  2. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  3. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  5. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  7. ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies

    There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...

  8. ACM-ICPC 2018 焦作赛区网络预赛 B题 Mathematical Curse

    A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

随机推荐

  1. Chessboard POJ - 2446(最大流 || 匹配)

    there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th c ...

  2. 【XSY2731】Div 数论 杜教筛 莫比乌斯反演

    题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...

  3. C/C++ 程序库

    C/C++ 程序库 // --------------------------------------------- 来几个不常见但是很变态的库吧: bundle: 把几乎所有常见的压缩库封装成了一个 ...

  4. Hdoj 2044.一只小蜜蜂... 题解

    Problem Description 有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行.请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数. 其中,蜂房的结构如下所示. Input 输入数据的第一 ...

  5. Java抽象类简单学习

    使用抽象类应该注意的几个要点: 包含一个或者多个抽象方法的类必须被声明为抽象类. 将类声明为抽象类,不一定含有抽象方法. 通常认为,在抽象类中不应该包括具体方法,建议尽量将通用的域和方法放在超类中. ...

  6. C 头文件、宏、编译问题

    @2019-02-15 [小记] > C 头文件的防重复包含是针对同一个源文件而言 原因: #include 头文件就是一段代码的拷贝,头文件中若有类型定义等,重复包含就会造成编译错误,若无类型 ...

  7. 「TJOI2015」概率论 解题报告

    「TJOI2015」概率论 令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数 然后列一个dp \[ f_i=\sum_{j=0}^{i-1} f_j f_{i-j ...

  8. NOIP2013华容道(BFS+乱搞)

    n<=30 * m<=30 的地图上,0表示墙壁,1表示可以放箱子的空地.q<=500次询问,每次问:当空地上唯一没有放箱子的空格子在(ex,ey)时,把位于(sx,sy)的箱子移动 ...

  9. 洛谷4451 整数的lqp拆分(生成函数)

    比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 ...

  10. CF1096F Inversion Expectation

    逆序对分三类: 1.已知对已知 树状数组直接处理即可 2.未知对未知 设未知数的位置数为\(m\),则有\(m(m-1)/2\)个数对.一个数对是逆序对的期望是\(0.5\)(一个逆序对与一个非逆序对 ...