二分类问题的交叉熵

  在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数。对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集合{0, 1}. 我们假设某个样本点的真实标签为yt, 该样本点取yt=1的概率为yp, 则该样本点的损失函数为

\[-log(yt|yp)=-(ytlog(yp)+(1-yt)log(1-yp))
\]

对于整个模型而言,其损失函数就是所有样本点的损失函数的平均值。注意到,对于该损失函数,其值应该为非负值,因为yp的取值在(0,1)之间。

自己实现的方法有问题?

  在Python的sklearn模块中,实现二分类问题的交叉熵损失函数为log_loss()。我们尝试着运行官网中给出的例子,同时,用自己的方法实现该损失函数,其Python代码如下:

from sklearn.metrics import log_loss
from math import log # 自然对数为底 # 二分类的交叉熵损失函数
# 利用sklearn模块的计算结果
y_true = [0, 0, 1, 1]
y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
sk_log_loss = log_loss(y_true, y_pred)
print('Loss by sklearn: %s.'%sk_log_loss) # 利用公式计算得到的结果
Loss = 0
for label, prob in zip(y_true, y_pred):
Loss -= (label*log(prob[0])+(1-label)*log(prob[1])) Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss)

在y_pred中,每个样本点都对应一组概率,如果我们把第一个概率作为样本分类为0的概率,第二个概率作为样本分类为1的概率,我们就会得到以下的输出结果:

Loss by sklearn: 0.1738073366910675.
Loss by equation: 2.430291498935543.

我们惊讶的发现,两种方法得到的损失函数值竟然是不一样的。可是,貌似我们的计算公式也没有出问题啊,这到底是怎么回事呢?

  这时候,我们最好的办法是借助源代码的帮助,看看源代码是怎么实现的,与我们的计算方法有什么不一样。

研究sklearn中的log_loss()源代码

  sklearn模块中的log_loss()函数的源代码地址为:https://github.com/scikit-learn/scikit-learn/blob/ed5e127b/sklearn/metrics/classification.py#L1576

  在具体分析源代码之前,我们应该注意以下几点(这也是从源代码中发现的):

  • 损失函数中的对数以自然常数e为底;
  • 预测概率的值有可能会出现0或1的情形,这在公式中是无意义的。因此,该代码使用了numpy中的clip()函数,将预测概率控制在[eps, 1-eps]范围内,其中eps为一个很小的数,避免了上述问题的出现。

  在log_loss()函数中,参数为:y_true, y_pred, eps, normalize, sample_weight,labels,为了分析问题的方便,我们只考虑该函数在所有默认参数取默认值时的情形。y_true为样本的真实标签,y_pred为预测概率。

  对于样本的真实标签y_true, 源代码中的处理代码为:

    lb = LabelBinarizer()

    if labels is not None:
lb.fit(labels)
else:
lb.fit(y_true) transformed_labels = lb.transform(y_true) if transformed_labels.shape[1] == 1:
transformed_labels = np.append(1 - transformed_labels,
transformed_labels, axis=1)

也就说,当我们的y_true为一维的时候,处理后的标签应当为二维的,比如说,我们输入的y_true为[0,0,1,1],那么处理后的标签应当为:

[[1 0]
[1 0]
[0 1]
[0 1]]

  对于预测概率,源代码中的处理过程为

	# Clipping
y_pred = np.clip(y_pred, eps, 1 - eps) # If y_pred is of single dimension, assume y_true to be binary
# and then check.
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1 - y_pred, y_pred, axis=1)

也就说,当我们的y_true为一维的时候,处理后的标签应当为二维的,这跟处理样本的真实标签y_true是一样的。处理完y_true和y_pred后,之后就按照损失函数的公式得到计算值。

自己实现二分类问题的交叉熵计算

  在我们分析完log_loss的源代码后,我们就能自己用公式来实现这个函数了,其Python代码如下:

from sklearn.metrics import log_loss
from math import log # 自然对数为底 # 二分类的交叉熵损失函数的计算 # y_true为一维,y_pred为二维
# 用sklearn的log_loss函数计算损失函数
y_true = [0,0,1,1]
y_pred = [[0.1,0.9], [0.2,0.8], [0.3,0.7], [0.01, 0.99]]
sk_log_loss = log_loss(y_true,y_pred)
print('Loss by sklearn: %s.'%sk_log_loss) # 用公式自己实现损失函数的计算
Loss = 0
for label, prob in zip(y_true, y_pred):
Loss -= ((1-label)*log(prob[0])+label*log(prob[1])) Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss) # y_true为一维,y_pred为二维
# 用sklearn的log_loss函数计算损失函数
y_true = [0,0,1,1]
y_pred = [0.1, 0.2, 0.3, 0.01]
sk_log_loss = log_loss(y_true,y_pred)
print('Loss by sklearn: %s.'%sk_log_loss) # 用公式自己实现损失函数的计算
Loss = 0
for label, prob in zip(y_true, y_pred):
Loss -= ((1-label)*log(1-prob)+label*log(prob)) Loss = Loss/len(y_true)
print('Loss by equation: %s.'% Loss)

运行该函数,输出的结果为:

Loss by sklearn: 1.0696870713050948.
Loss by equation: 1.0696870713050948.
Loss by sklearn: 1.5344117643215158.
Loss by equation: 1.5344117643215158.

  这样我们就用公式能自己实现二分类问题的交叉熵计算了,计算结果与sklearn的log_loss()函数一致。

感悟

  有空就得读读程序的源代码,不仅有助于我们解决问题,还能给我们很多启示,比如log_loss()函数中的np.clip()函数的应用,能很好地避免出现预测概率为0或1的情形。

  log_loss()函数的实现虽然简单,但阅读源代码的乐趣是无穷的。以后也会继续更新,希望大家多多关注。

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

Sklearn中二分类问题的交叉熵计算的更多相关文章

  1. 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵

    经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...

  2. 关于交叉熵(cross entropy),你了解哪些

    二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值, ...

  3. 理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用

    交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是R ...

  4. 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数

    分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...

  5. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  6. 交叉熵理解:softmax_cross_entropy,binary_cross_entropy,sigmoid_cross_entropy简介

    cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类. 1.二元交叉熵 binary_cross_entropy 我们通常见的交叉熵是二元交 ...

  7. 『TensorFlow』分类问题与两种交叉熵

    关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失 ...

  8. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  9. 转:Lucene之计算相似度模型VSM(Vector Space Model) : tf-idf与交叉熵关系,cos余弦相似度

    原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查 ...

随机推荐

  1. Spring Boot Externalized Configuration

    https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html Ex ...

  2. Spring Boot中Web应用的统一异常处理 转载来自翟永超

    我们在做Web应用的时候,请求处理过程中发生错误是非常常见的情况.Spring Boot提供了一个默认的映射:/error,当处理中抛出异常之后,会转到该请求中处理,并且该请求有一个全局的错误页面用来 ...

  3. 《高质量C++&C 编程指南》学习笔记

    这本电子书是在国科大上课时候,老师在课件资源里边提供的.之所以会重视这个文件,是因为本科时候,有个老师提到过:那个学生遍的代码很整齐,看起来让人舒服,我就知道工大留不下他.因此,我就格外注意这件事,但 ...

  4. 卷积神经网络中的channel 和filter

    在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet,channels 都是必填的一个参数. channels ...

  5. django数据库连接快速配置

    DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql',#数据库驱动 'NAME': 'login_db',#数据库名字 'US ...

  6. PackageManager整理

    一.PackageManager的功能 1.安装.卸载应用.2.查询permission相关信息.3.查询Application相关信息(application,activity,receiver,s ...

  7. 图片处理服务 ImageMagick 的安装和使用

    简介 该文章使用目前官方最新版本7.0.8,这里只记录下Windows系统下的安装. 官方网站:http://www.imagemagick.org/script/index.php. ImageMa ...

  8. Maven 项目打包出现错误 Failed to execute goal org.apache.maven.plugins:maven-resources-plugin

    今天碰到一个奇怪的问题,就是我在eclipse中使用maven命令:clean package 命令打完包之后,通过FlashFXP将jar包上传到Linux服务器后,由于其他原因,我想要修改下程序重 ...

  9. Eclipse 在高分辨率4K显示器下图标按钮过小

    买了LG的4K显示器,发现由于分辨率太高,导致好多软件和网站都没进行高分辨率适配,显示比较小,缩放会使好多软件都显示错位.Eclipse就是其中之一. 网上搜了下解决方案如下: 原理 高DPI Win ...

  10. 第85节:Java中的JavaScript

    第85节:Java中的JavaScript 复习一下css: 选择器的格式: 元素选择器:元素的名称{} 类选择器:. 开头 ID选择器:# ID选择器 后代选择器: 选择器1 选择器2 子元素选择器 ...