题解:

因为n,m很大

所以复杂度应该是和m相关的

考虑到每个点的影响区间是连续的

就很简单了

区间查询最小值线段树维护(st表也可以)

然后注意一下不要重复算一个就可以了

max函数用template<class T> 不能与原来min重名

代码:

#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define IL inline
#define rint register int
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const int N=3e5;
const ll INF=1e18;
const int N2=1e7;
ll dis[N],sum1[N],sum2[N];
int n,m,cnt;
struct re{
int a;
ll b;
};
vector<int> ve;
ll data1[N2],data2[N2];
int ls[N2],rs[N2];
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return (A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++);
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=c^;
while (c=gc(),<c&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int C=-,Z;
template <class T> void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z); sr[++C]='\n';
}
template<class T> T MAX(T x,T y)
{
if (x>y) return(x); else return(y);
}
template<class T> T MIN(T x,T y)
{
if (x<y) return(x); else return(y);
}
IL void swap(int &x,int &y)
{
int tmp=x; x=y; y=tmp;
}
void clear()
{
cnt=;
for (int i=;i<ve.size();i++)
{
int x=ve[i];
data1[x]=INF; data2[x]=INF; ls[x]=; rs[x]=;
}
ve.clear();
}
void updata(int x)
{
data1[x]=MIN(data1[ls[x]],data1[rs[x]]);
data2[x]=MIN(data2[ls[x]],data2[rs[x]]);
}
void change(int &x,int h,int t,int pos,ll k)
{
if (!x) x=++cnt;
ve.push_back(x);
if (h==t)
{
data1[x]=MIN(data1[x],sum1[pos-]+k);
data2[x]=MIN(data2[x],sum2[pos]+k);
return;
}
int mid=(h+t)/;
if (pos<=mid) change(ls[x],h,mid,pos,k);
else change(rs[x],mid+,t,pos,k);
updata(x);
}
ll query1(int x,int h,int t,int h1,int t1)
{
if (!x) return(INF);
if (h1<=h&&t<=t1) return(data1[x]);
ll ans=INF;
int mid=(h+t)/;
if (h1<=mid) ans=query1(ls[x],h,mid,h1,t1);
if (mid<t1) ans=MIN(ans,query1(rs[x],mid+,t,h1,t1));
return(ans);
}
ll query2(int x,int h,int t,int h1,int t1)
{
if (!x) return(INF);
if (h1<=h&&t<=t1) return(data2[x]);
ll ans=INF;
int mid=(h+t)/;
if (h1<=mid) ans=query2(ls[x],h,mid,h1,t1);
if (mid<t1) ans=MIN(ans,query2(rs[x],mid+,t,h1,t1));
return(ans);
}
IL ll check1(int h,int t,int x)
{
h=MAX(h,); t=MIN(t,n);
return(query2(,,n,h,t)-sum2[x]);
}
IL ll check2(int h,int t,int x)
{
h=MAX(h,); t=MIN(t,n);
return(query1(,,n,h,t)-sum1[x-]);
}
int main()
{
read(n); read(m);
rep(i,,n-) read(dis[i]);
rep(i,,n-) sum1[i]=dis[i],sum1[i]+=sum1[i-];
dep(i,n-,) sum2[i]=dis[i],sum2[i]+=sum2[i+];
rep(i,,N2-) data1[i]=INF,data2[i]=INF;
rep(i,,m)
{
int x,y;
ll ans=,z;
read(x);
vector<re> ve1;
ve1.push_back((re){,});
clear();
int root=;
rep(j,,x)
{
read(y); read(z);
change(root,,n,y,z);
ve1.push_back((re){y,z});
}
rep(j,,x)
{
int y=ve1[j].a;
ll z=ve1[j].b;
int h=y,t=n;
while (h<t)
{
int mid=(h+t+)/;
ll jl=sum1[mid-]-sum1[y-]+z;
if (MIN(check1(y+,mid,mid),check2(mid,*mid-y-,mid))>jl&&
check2(*mid-y,*mid-y,mid)>=jl) h=mid;
else t=mid-;
}
ans+=t-y;
h=,t=y;
while (h<t)
{
int mid=(h+t)/;
ll jl=sum1[y-]-sum1[mid-]+z;
if (MIN(check2(mid,y-,mid),check1(*mid-y+,mid,mid))>jl&&
check1(*mid-y,*mid-y,mid)>jl) t=mid;
else h=mid+;
}
ans+=y-h+;
}
wer(ans);
}
fwrite(sr,,C+,stdout);
return ;
}

zjoi[ZJOI2018]胖的更多相关文章

  1. 【BZOJ5308】[ZJOI2018]胖(模拟,ST表,二分)

    [BZOJ5308][ZJOI2018]胖(模拟,ST表,二分) 题面 BZOJ 洛谷 题解 首先发现每条\(0\)出发的边都一定会更新到底下的一段区间的点. 考虑存在一条\(0\rightarrow ...

  2. 5308: [Zjoi2018]胖

    5308: [Zjoi2018]胖 链接 分析: 题目转化为一个点可以更新多少个点,一个点可以更新的点一定是一个区间,考虑二分左右端点确定这个区间. 设当前点是x,向右二分一个点y,如果x可以更新到y ...

  3. P4501 [ZJOI2018]胖

    题目 P4501 [ZJOI2018]胖 官方口中的送分题 做法 我们通过手玩(脑补),\(a_i\)所作的贡献(能更新的点)为:在\(a_i\)更新\(\forall x\)更新前前没有其他点能把\ ...

  4. [ZJOI2018]胖

    嘟嘟嘟 都说这题是送分题,但我怎么就不觉得的呢. 看来我还是太弱了啊-- 大体思路就是对于每一个设计方案,答案就是每一个关键点能更新的点的数量之和. 关键在于怎么求一个关键点能更新那些点. 首先这些点 ...

  5. ZJOI2018 胖 二分 ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/ZJOI2018Day2T2.html 题目传送门 - BZOJ5308 题目传送门 - LOJ2529 题目传送 ...

  6. 2019.03.04 bzoj5308: [Zjoi2018]胖(二分答案+st表)

    传送门 想题5分钟调题两小时系列 其实还是我tcl 读完题之后自然会知道一个关键点能够更新的点是一段连续的区间,于是我们对于每个点能到的左右区间二分答案,用ststst表维护一下查询即可. 代码: # ...

  7. BZOJ5308 ZJOI2018胖

    贝尔福特曼(?)的方式相当于每次将所有与源点直接相连的点的影响区域向两边各扩展一格.显然每个点在过程中最多更新其他点一次且这些点构成一段连续区间.这个东西二分st表查一下就可以了.注意某一轮中两点都更 ...

  8. 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)

    题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...

  9. bzoj 5308: [Zjoi2018]胖

    Description Cedyks是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks是一个富有的男孩子.他住在著名的ThePLace(宫殿)中. Cedyks是一个 ...

随机推荐

  1. Flash芯片你都认识吗?

    [导读]Flash存储器,简称Flash,它结合了ROM和RAM的长处,不仅具备电子可擦除可编程的性能,还不会因断电而丢失数据,具有快速读取数据的特点;在现在琳琅满目的电子市场上,Flash总类可谓繁 ...

  2. GetCheckProxy

    @echo off setlocal enabledelayedexpansion set infile=free.txt set url=https://www.google.com/?gws_rd ...

  3. cryptsetup文件系统加密

    今天做了SYC攻防题的文件系统挂载部分,在找到挂载最内层的final文件时发现mount无法识别,这也许就是一个加密的文件系统吧,还好-在龟速的 网络环境下查阅到了losetup循环挂载系统命令,但是 ...

  4. python获取esxi的磁盘使用率信息

    #!/usr/bin/python3 #coding:utf-8 #Author: ziming """ 只用于模拟开发功能测试 """ f ...

  5. ASP.NET如何下载大文件

    关于此代码的几点说明: 1. 将数据分成较小的部分,然后将其移动到输出流以供下载,从而获取这些数据. 2. 根据下载的文件类型来指定 Response.ContentType .(参考OSChina的 ...

  6. C# Excel行高、列宽、合并单元格、单元格边框线、冻结

    private _Workbook _workBook = null;private Worksheet _workSheet = null;private Excel.Application _ex ...

  7. python基础教程(第二版)

    开始学习python,根据Python基础教程,把里面相关的基础章节写成对应的.py文件 下面是github上的链接 python基础第1章基础 python基础第2章序列和元组 python基础第3 ...

  8. Swift 学习- 02 -- 基础部分2

    class NamedShape{ var numberOfSides: Int = 0 var name: String init(name: String) { self.name = name ...

  9. java 中int与integer的区别

    int与integer的区别从大的方面来说就是基本数据类型与其包装类的区别: int 是基本类型,直接存数值,而integer是对象,用一个引用指向这个对象 1.Java 中的数据类型分为基本数据类型 ...

  10. 配置 Confluence 6 安全的最佳实践

    让一个系统能够变得更加坚固的最好办法是将系统独立出来.请参考你公司的安全管理策略和相关人员来找到你公司应该采用何种安全策略.这里有很多事情需要我们考虑,例如考虑如何安装我们的操作系统,应用服务器,数据 ...