卡尔曼滤波算法--核心公式推导导论

10 个月前

写在最前面:这是我第一篇专栏文章,感谢知乎提供这么一个平台,让自己能和大家分享知识。本人会不定期的开始更新文章,文章的内容应该集中在汽车动力学控制,整车软件架构,控制器等方面。作为一名在校硕士,很多理解都可能不全面,不正确,大家有不同意见欢迎讨论。 谢谢!
---------------------------------------------------------------------------------------------------------------------------

卡尔曼滤波算法的应用很广泛,省略很多字。

卡尔曼滤波算法的优点很多,省略很多字。

卡尔曼滤波算法很牛逼,因为有一堆公式,有一堆符号,看起来就很牛逼啊,乍一看不懂的都很牛逼啊!

本文针对卡尔曼滤波算法的核心公式进行推导,不让大家被它华丽的外表吓到。(之后计划写关于针对非线性情况的EKF和UKF,对卡尔曼滤波算法做一个全面一点的应用介绍。感兴趣的可以关注专栏。)

--------------------------------------------------------------------------------------------------------------------------

Okay,进入正题。这篇文章假设读者已经对卡尔曼滤波算法有初步的了解,知道它能做什么,知道它的优点,知道它很牛逼,并且你已经对它产生兴趣,但不知道如何下手。

首先给出一个控制理论中公式,别急着翻控制理论的书,没那么复杂:

两个基本问题:

1.卡尔曼滤波算法要做什么?

对状态进行估计。

2. 卡尔曼滤波算法怎么对状态进行估计?

利用状态过程噪声和测量噪声对状态进行估计。

一个状态在一个时刻点k的状态进入下一个时刻点k+1状态,会有很多外界因素的干扰,我们把干扰就叫做过程噪声,(这个词一看就是硬翻译过来的,别在意为什么叫噪声)用w表示。任何一个测量仪器,都会有误差,我们把这个误差叫做量测噪声,用v表示。

回到上面那个公式,状态方程表示状态在不断的更新,从一个时刻点进入下一个时刻点,这个很好理解。关键是量测方程,它表示,我们不断更新的状态有几个能用测量仪器测出来,比如,汽车运动状态参数有很多,比如速度,轮速,滑移率等,但是我们只能测量出轮速,因此量测方程要做的就是把状态参数中能量测的状态拿出来。

我们始终要记得我们要做的事:我们要得到的是优化的状态量Xk。

理解了上面之后就可以开始推导公式了。

1.首先不考虑过程噪声对状态进行更新,很简单:

举个例子,v(k)=v(k-1)+at,匀加速运动咯。

2.不考虑测量噪声取出能测量的状态,也很简单:

3.用测量仪器测量出来的状态值(大家可以考虑到:测量的值就是被各种噪声干扰后的真实值)减去上面不考虑噪声得到的测量值:

这个值在数学上是一个定义值,叫做新息,有很多有趣的性质,感兴趣的可以自己谷歌。

我们对步骤暂且停一停。这个叫新息的值有什么用?由上面的过程我们可以明显看到,它反映了过程噪声和测量噪声综合对测量状态值的影响,也就是它包含了w和v的情况。

回到数学层面,(不要害怕,很简单的数学应用和思考啦!)一个数值c由两部分内容a和b组成,那么怎样用数学表达式来表达?

一般有两种做法:

I.直接相加:c=a+b;

II. 用比例的方法:a=n*c,b=(1-n)*c

卡尔曼采用了方法II,用比例的方法来做(其实这也是为什么叫做滤波的原因,因为滤波就是给权值之类的操作)。也就是说,过程噪声w=新息*一个比例。这样得到的过程噪声加上原来(第一步)不考虑过程噪声的状态值不就是优化值了吗? 也就是:

Okay,都写到这里了,有必要做一下前提假设:

a. 什么高斯噪声,均值为零一堆;

b.Ak,Ck,wk的协方差Q,vk的协方差R,系统协方差初始值P0,状态初始值X0,都已知。为什么已知,你实际做项目就知道了。不过不懂的可以留言或者私信。

那么到目前为止我们的思路就是清楚了,找到一个合适的Hk值(卡尔曼增益),那么我们就能得到状态的最优值。(卡尔曼说的,不是我说的,所以你问为什么,你要问他,这么深层次的理论留给博士和学者们去做就好,我们就现学现用就行,哈哈哈,站在巨人的肩膀!)

问题来了:怎么得到合适的Hk?似乎不是随便一个参数。

这是误差协方差矩阵。

思路:使得误差协方差矩阵Pk最小的Hk。

为什么?这里我从感观的角度说明自己的理解,欢迎讨论。

协方差表示什么,协方差表示两者之间的联系或者关系,关系越大,协方差越大。误差协方差越小说明过程噪声和量测噪声的关系越小。关系越小能做什么,这要回到我们第3步讨论的我们用比例的方法分开了w和v。用比例分开,到底多少属于w,多少是v,如果关系越小,分开的越精确,比如一堆白砂糖和盐,如果两种混合的很均匀,我们说它关系很大,也就越难用比例的方法将其分开。

4.求的误差协方差矩阵Pk

自然是把里面的Xk先得到,然后公式运算,通过上面的步骤我们也容易得到:

然后复杂的数学计算,和之前假设的高斯噪声,新息的性质之类(至于过程,个人觉得你如果只做应用,不研究算法,就没必要深入去看了),就能得到下面的卡尔曼滤波递推公式:

通过上面的解释,我们也就不难知道这些公式都在干嘛,知道干嘛就可以了。在知道A,C,P0,Q,R的情况下,整个公式的运算流程也都很清晰了。

————————————————————————————————————————

欢迎评论!转载请注明出处!谢谢大家!

卡尔曼滤波算法--核心公式推导导论 - ZZ的更多相关文章

  1. 基于Hdl Coder实现卡尔曼滤波算法

    总所周知,FPGA极其不擅长复杂算法的运算,但是如果项目中又涉及一些高级算法的实现,在没有可封装IP核调用的形式下,我们应该如何进行程序开发呢?今夕已经是2020年,我们一味依赖于用verilog写代 ...

  2. Floyd算法核心代码证明

    Flody  大家都知道这个最终模版: for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dis[i ...

  3. 卡尔曼滤波(Kalman Filter) ZZ

    一.引言 以下我们引用文献[1]中的一段话作为本文的開始: 想象你在黄昏时分看着一仅仅小鸟飞行穿过浓密的丛林.你仅仅能隐隐约约.断断续续地瞥见小鸟运动的闪现.你试图努力地猜測小鸟在哪里以及下一时刻它会 ...

  4. 数据挖掘算法以及其实现zz

    实验一    分类技术及其应用 实习要求: 基于线性回归模型拟合一个班学生的学习成绩,建立预测模型.数据可由自己建立100个学生的学习成绩. 1)    算法思想: 最小二乘法 设经验方程是y=F(x ...

  5. 数据挖掘分类算法之决策树(zz)

    决策树(Decision tree) 决策树是以实例为基础的归纳学习算法.     它从一组无次序.无规则的元组中推理出决策树表示形式的分类规则.它采用自顶向下的递归方式,在决策树的内部结点进行属性值 ...

  6. js随手笔记-------理解JavaScript碰撞检测算法核心简单实现原理

    碰撞检测在前端游戏,设计拖拽的实用业务等领域的应用场景非常广泛,今天我们就在这里对于前端JavaScript如何实现碰撞检测算法进行一个原理上的探讨,让大家能够明白如何实现碰撞以及碰撞的理念是什么:1 ...

  7. Node.js的核心与红利(zz)

    唯有明晰历史,才能了然当下,预知未来.作者从历史角度解读Node.js,帮助读者透过猜忌和谣言,看清真实的Node.js,了解Node.js的核心与红利. 令人惴惴不安的Node.js 我们越来越频繁 ...

  8. 什么才是程序员的核心竞争力?zz

    原文出处: 知乎 姚冬的观点 学习能力,尤其是自学能力,你啥时看到那些有名的程序高手在论坛上问“学习 XX 该看什么书,如何快速学习 XXX,学习 XXX 有什么代码推荐”之类的问题,他们想学什么很快 ...

  9. Coursera_程序设计与算法_计算导论与C语言基础_数组应用练习

    您也可以在我的个人博客中阅读此文章:跳转 编程题#1:求字母的个数 描述 在一个字符串中找出元音字母a,e,i,o,u出现的次数. 输入 输入一行字符串(字符串中可能有空格,请用gets(s)方法把一 ...

随机推荐

  1. 钻牛角尖还是走进死胡同--shell脚本根据名称获得 dubbo 服务的 pid

    到了下午,突然觉得坐立不安,可能是因为中午没有休息好.老大不小了还在做页面整合的事情,这是参加工作时就干的工作了.然后突然想去挑战高级一点的缺陷排查,结果一不小心就钻了一个牛角尖.启动 dubbo 服 ...

  2. linux脚本启动停止一个jar

    ###########################启动########################### #!/bin/sh ####定义一个函数在当前文件夹下读取所有jar文件 functi ...

  3. Android MIME类型结构

    Android MIME类型的结构 MIMW类型标准:http://tools.ietf/html/rfc2046根据MIME类型规范,MIME类型包含两部分:类型和子类型.下面是一些流行的MIME类 ...

  4. DMA/TIM capture

    This is a more free standing example measuring the LSI (TIM5_CH4 internally) and demonstrating DMA/T ...

  5. mysql函数的使用

    最近总感觉sql语句不对劲,所以就看了一些官方文档发现了一些以前没有注意的函数:感觉在查询的时候可以用得上,毕竟是内置函数,用起来效率应该会好一些的: FIND_IN_SET(str,strlist) ...

  6. Win32动态链接库和MFC 动态链接库

      通过使用 DLL,程序可以实现模块化,由相对独立的组件组成.例如,一个计帐程序可以按模块来销售.可以在运行时将各个模块加载到主程序中(如果安装了相应模块).因为模块是彼此独立的,所以程序的加载速度 ...

  7. drp错误集锦---“Cannot return from outside a function or method”

    好久都不动的项目,今天打开项目突然是红色感叹号.详细错误表现为: 也就是说,如今MyEclipse已经不识别在JSP页面中使用的return方法了(并且不止一处这种警告),那怎么办?????顿时闹钟一 ...

  8. TrinityCore3.3.5环境搭建

    说起TrinityCore,可能知道的人不多,但是说起MaNGOS(芒果)知道的人应该就不少了.MaNGOS是一个魔兽私服服务器端,TrinityCore继承自TrinityCore并且做了优化,一直 ...

  9. /bin/sh^M: bad interpreter:没有那个文件或目录解决

    /bin/sh^M: bad interpreter:没有那个文件或目录解决   执行脚本时发现如下错误: /bin/sh^M: bad interpreter: 没有那个文件或目录   错误分析: ...

  10. JAVA8 List排序

    先定义一个实体类 @Data @AllArgsConstructor @NoArgsConstructor public class Human { private String name; priv ...