python进行数据分析------相关分析
相关分析

import statsmodels.api as sm
import pandas as pd
import numpy as np
from patsy.highlevel import dmatrices # 这个是线性回归的
from common.util.my_sqlalchemy import sqlalchemy_engine
import math from scipy.stats.stats import pearsonr sql = "select Q1R3, Q1R5, Q1R6, Q1R7 from db2017091115412316222027656281_1;"
df = pd.read_sql(sql, sqlalchemy_engine)
df_dropna = df.dropna() result = pearsonr(df_dropna['Q1R3'], df_dropna['Q1R5'])
print(result)

报告展示:
相关性检验显示,rkzzl与gmsr显著负相关(Pearson’r=-0.529,p<0.05)。
若p>0.5则写:rkzzl与gmsr无显著相关关系(Pearson’r=-0.529,p>0.05)。
|
Pearson’r |
p |
|
|
-0.5292 |
0.0425 |
| A | B | C | |
| A | AA | AB | AC |
| B | AB | BB | BC |
| C | AC | CB | CC |
二期
经过数据分析部指导,系数做了算法优化
def CorrelationAnalysisDetail(UserID,ProjID,QuesID,VariableNames,CasesCondition,VariableIDs,Corr):
select_id_ret = select_ques_datatableid_optionid()
whether_datatableid = select_id_ret.SelectDatatableIDTwoSql(UserID, ProjID, QuesID, VariableIDs[0])
select_id_ret.close()
if whether_datatableid:
DataTableID = whether_datatableid[0]["DataTableID"]
DatabaseName = whether_datatableid[0]["DatabaseName"]
TableName = JoinTableName(whether_datatableid)
df_dropna = CorrelationAnalysisModel(VariableNames,TableName, DatabaseName, CasesCondition)
# spearman 斯皮尔曼系数
# kendall 肯德尔系数
# pearson 皮尔逊系数
# return pearsonr(df_dropna[xVariable], df_dropna[yVariable]) return df_dropna.corr(method=Corr).to_dict()
python进行数据分析------相关分析的更多相关文章
- python进行数据分析
1. python进行数据分析----线性回归 2. python进行数据分析------相关分析 3. python进行数据分析---python3卡方 4. 多重响应分析,多选题二分法思路 5. ...
- 像Excel一样使用python进行数据分析
Excel是数据分析中最常用的工具,本篇文章通过python与excel的功能对比介绍如何使用python通过函数式编程完成excel中的数据处理及分析工作.在Python中pandas库用于数据处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 《利用python进行数据分析》读书笔记 --第一、二章 准备与例子
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得 ...
随机推荐
- 深入浅出HTTPS基本原理
基础知识准备:在了解HTTPS的基本原理之前,需要先了解如下的基本知识. 一.什么是HTTPS,TLS,SSL HTTPS,也称作HTTP over TLS.TLS的前身是SSL,TLS 1.0通常被 ...
- 哈佛大学 Machine Learning
https://am207.github.io/2017/material.html https://am207.github.io/2017/topics.html https://am207.gi ...
- angular学习笔记(三十)-指令(2)-restrice,replace,template
本篇主要讲解指令中的 restrict属性, replace属性, template属性 这三个属性 一. restrict: 字符串.定义指令在视图中的使用方式,一共有四种使用方式: 1. 元素: ...
- cuteftp 9 显示中文乱码
当用FTP连接空间时,中文命名的文件名会显示乱码,原来是编码设置错误.怎么修改呢? 修改方法如下: 选择. 工具--> 全局选项->传输:1. 传输方法: ASCII2. SFTP档案名称 ...
- linux怎么关闭iptables linux如何关闭防火墙
Linux系统下面自带了防火墙iptables,iptables可以设置很多安全规则.但是如果配置错误很容易导致各种网络问题,那么如果要关闭禁用防火墙怎么操作呢,咗嚛本经验以centos系统为例演示如 ...
- 【ARM】2410裸机系列-流水灯
开发环境 1.硬件平台:FS2410(s3c2410) 2.主机:Ubuntu 12.04 LTS LED原理图 LED的GPIO的配置 配置GPFCON寄存器,设置GPF4-7为输出 配置GPF ...
- css超出一行添加省略号属性:text-overflow和white-space
通过使用text-overflow和white-space属性来使文本在一行内显示,超出则加省略号,添加如下html代码: <p>前端开发博客专注前端开发和技术分享,如果描述超过100像素 ...
- 爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,loads,dump,load方法介绍
爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,load ...
- win7下memCache安装过程
1.下载memcache 的windows 稳定版,解压放某个盘下面,比如在H:/wamp/www/php api/memcache: 2.在终端(即cmd 命令界面)下,输入安装命令 :H:/wam ...
- ResolveUrl的用法
<script src='<%=ResolveUrl("~/UserControls/M3/Validate.js") %>' type="text/j ...