我承认这道很难(对我来说),搞脑子啊,搞了好久,数论刚开始没多久,还不是很强大,思路有点死,主要是我 天赋太差,太菜了,希望多做做有所改善

开始解析:

首先要将在 [ l,u]内的所有素数找出来,还好题目说了u-l 小于 1000 000,不然内存都得暴死了,最常用的方法就是筛法了,当然还有 传说中的 6*n+1 可惜我不会,

开始假设所有范围内的数都是素数,然后讲所有素数的倍数(肯定不是素数)筛掉,经过无数轮的筛选,余下的就是素数,同时要考虑到所有大于2的偶数都不是素数,可以节省空间,

使用筛法筛掉[l,u]内的所有非素数,需要知道[l,u]的所有非素数的素因子(因为一个非素数是被它最小的素因子删掉的),2 147 486 647内的数或者是素数,或者能呗根号(2 147 486 647)内的素数正数,也就是说,[l,u]区间的所有非素数的素因子都在 根号(2 147 486 647)内;

预先将 根号(2 147 483 647)内的所有素数都找出来,然后用这些素数去筛掉指定区间内的所有非素数,

要考虑到 素数定理来确定做题的范围, n/lnn就是最多的素数个数


#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long
#define LL __int64
#define eps 1e-8
#define e 2.718281828
//
//const ll INF=9999999999999; #define M 400000100 #define inf 0xfffffff using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012]; bool isprime[50012*20];
ll prime1[50012],prime2[1000012];
ll l,u;
ll numofprime1,numofprime2;//宁可写复杂点也要表达明确意思不误导自己 void dopprime()//筛法,就是模版,直接套上去,注意自己选定的范围,n/lnn
{
memset(isprime,true,sizeof(isprime));
isprime[1]=0;
numofprime1=0;
for(ll i=2;i<=50012;i++)
{
if(isprime[i])
{
prime1[++numofprime1]=i;
for(ll j=i*i;j<50001;j+=i)
isprime[j]=false;
}
}
} void dopprime2()//来筛区间内的非素数
{
ll tmp;
memset(isprime,true,sizeof(isprime));
for(ll i=1;i<=numofprime1;i++)
{
tmp=l/prime1[i];
while(tmp*prime1[i] < l || tmp <= 1)
tmp++;
for(ll j=tmp*prime1[i];j<=u;j+=prime1[i])
{
if(j >= l)
isprime[j-l]=false;
}
}
if(l==1)
isprime[0]=false;
} int main(void)
{
dopprime();//筛法
while(~scanf("%lld %lld",&l,&u))
{
dopprime2();
numofprime2=0;
ll minn=inf,maxn=-inf;
ll minl,minr,maxl,maxr;
for(ll i=0;i<=u-l;i++)
if(isprime[i])
prime2[++numofprime2]=i+l;
if(numofprime2 <= 1)
{
printf("There are no adjacent primes.\n");
continue;
}
for(ll i=1;i<numofprime2;i++)//找相邻的方法,很简单,但是我居然写错了刚开始
{
if(prime2[i+1]-prime2[i] < minn)
{
minn=prime2[i+1]-prime2[i];
minl=prime2[i];
minr=prime2[i+1];
}
if(prime2[i+1]-prime2[i] > maxn)
{
maxn=prime2[i+1]-prime2[i];
maxl=prime2[i];
maxr=prime2[i+1];
}
}
printf("%lld,%lld are closest, %lld,%lld are most distant.\n",minl,minr,maxl,maxr);
}
}

poj2689 Prime Distance 有难度 埃拉托斯尼斯筛法的运用的更多相关文章

  1. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  2. POJ-2689 Prime Distance (两重筛素数,区间平移)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13961   Accepted: 3725 D ...

  3. 解题报告:poj2689 Prime Distance

    2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...

  4. POJ-2689 Prime Distance,区间素数筛法

                                                    Prime Distance 只会埃氏筛法的弱鸡今天读了读挑战程序设计120页,明白了求小区间内素数的方 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. POJ2689 - Prime Distance(素数筛选)

    题目大意 给定两个数L和U,要求你求出在区间[L, U] 内所有素数中,相邻两个素数差值最小的两个素数C1和C2以及相邻两个素数差值最大的两个素数D1和D2,并且L-U<1,000,000 题解 ...

  7. poj2689 Prime Distance题解报告

    题目戳这里 [题目大意] 给定一个区间[L,R],求区间内的质数相邻两个距离最大和最小的. [思路分析] 其实很简单呀,很明显可以看出来是数论题,有关于质数的知识. 要注意一下的就是L和R的数据范围都 ...

  8. POJ2689 Prime Distance 质数筛选

    题目大意 求区间[L, R]中距离最大和最小的两对相邻质数.R<2^31, R-L<1e6. 总体思路 本题数据很大.求sqrt(R)的所有质数,用这些质数乘以j, j+1, j+2... ...

  9. poj2689 Prime Distance(素数区间筛法)

    题目链接:http://poj.org/problem?id=2689 题目大意:输入两个数L和U(1<=L<U<=2 147 483 647),要找出两个相邻素数C1和C2(L&l ...

随机推荐

  1. 解决克隆 centos虚拟机后修改克隆后的机器的ip、mac、uuid失败的问题

    解决办法:     So here's how we fix it: Remove the kernel's networking interface rules file so that it ca ...

  2. 用SDWebImage加载FLAnimatedImage

    用SDWebImage加载FLAnimatedImage 效果 源码 https://github.com/YouXianMing/Animations // // GifPictureControl ...

  3. Java并发编程的艺术(十一)——线程池(2)

    Executor两级调度模型 在HotSpot虚拟机中,Java中的线程将会被一一映射为操作系统的线程. 在Java虚拟机层面,用户将多个任务提交给Executor框架,Executor负责分配线程执 ...

  4. 关于mysql中information_schema.tables

    项目中出现这样一个SQL语句,现记录如下: @Select("select table_name tableName, engine, table_comment tableComment, ...

  5. .Net AppDomain详解(一)

    AppDomain是CLR的运行单元,它可以加载Assembly.创建对象以及执行程序.AppDomain是CLR实现代码隔离的基本机制. 每一个AppDomain可以单独运行.停止:每个AppDom ...

  6. Asp.Net Core获取请求信息/获取请求地址

     一.Asp.Net Core 2.0版本中目前HttpRequest是个抽象类 在控制器或视图上下文中获取到的 Request对象,是 DefaultHttpRequest的实例. 定义 如图 : ...

  7. 在 JDK 9 中更简洁使用 try-with-resources 语句

    本文详细介绍了自 JDK 7 引入的 try-with-resources 语句的原理和用法,以及介绍了 JDK 9 对 try-with-resources 的改进,使得用户可以更加方便.简洁的使用 ...

  8. HotSpot Generations

    本文主要介绍HotSpot JVM的 Generations 机制, 原文来自 Oracle 文档  Java SE 6 HotSpot[tm] Virtual Machine Garbage Col ...

  9. AltiumDesigner PCB布局布线过程与技巧

    首先是原理图设计. 原理图设计是前期准备工作,对简单的板子,如果熟练流程,不妨可以跳过.但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错.在画原理 ...

  10. 如何移除EFI system partition?

    莫名其妙, 在我的服务器上出现了这样一种分区, 上面写着EFI system, 删也删不掉, 因为删除分区的菜单是灰掉的. 找到了这篇文章, 成功的删掉了这个烦人的分区. 整个过程记录如下:   参考 ...