BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)
http://www.lydsy.com/JudgeOnline/problem.php?id=1005
题意:
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
思路:
又了解了一个神奇的东西,prufer数列!!!
prufer数列,可以用来解一些关于无根树计数的问题。
prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码。
(1)无根树转化为prufer序列。
首先定义无根树中度数为1的节点是叶子节点。
找到编号最小的叶子并删除,序列中添加与之相连的节点编号,重复执行直到只剩下2个节点。
如下图的树对应的prufer序列就是3,5,1,3。
具体实现可以用一个set搞定,维护度数为1的节点。复杂度O(nlogn)。
(2)prufer序列转化为无根树。
设点集V={1,2,3,...,n},每次取出prufer序列中最前面的元素u,在V中找到编号最小的没有在prufer序列中出现的元素v,给u,v连边然后分别删除,最后在V中剩下两个节点,给它们连边。最终得到的就是无根树。
具体实现也可以用一个set,维护prufer序列中没有出现的编号。复杂度O(nlogn)。
最后有一个很重要的性质就是prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1。

接下来就是按照这个式子计算即可,用java计算会比较方便。
import java.math.*;
import java.util.Scanner; public class Main{
static int n;
static int d[]=new int[1005];
static BigInteger c[]=new BigInteger[1005];
static BigInteger ans; public static void main(String[] args){
Scanner in=new Scanner(System.in);
int flag=0, tot=0, cnt=0;
while(in.hasNextInt()){
n=in.nextInt();
for(int i=0;i<n;i++){
d[i]=in.nextInt();
if(d[i]==0 || d[i]>n-1) flag=1;
if(d[i]==-1) continue;
tot+=d[i]-1;
cnt++;
} if(flag==1) {System.out.println("0");continue;}
c[0]=BigInteger.valueOf(1);
for(int i=1;i<=n;i++) c[i]=c[i-1].multiply(BigInteger.valueOf(i));
ans=c[n-2];
for(int i=1;i<=n-2-tot;i++) ans=ans.multiply(BigInteger.valueOf(n-cnt));
ans=ans.divide(c[n-2-tot]);
for(int i=0;i<n;i++){
if(d[i]==-1) continue;
ans=ans.divide(c[d[i]-1]);
}
System.out.println(ans);
}
in.close();
}
}
BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)的更多相关文章
- BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)
题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...
- BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)
题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...
- BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
- BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合
1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...
随机推荐
- 16 jmeter中的监听器以及测试结果分析
常用监听器 断言结果.查看结果树.聚合报告.Summary Report.用表格查看结果.图形结果.aggregate graph等 指标分析 -Samples:本次场景中一共完成了多少请求-Aver ...
- 关于LUA中的随机数问题
也许很多人会奇怪为什么使用LUA的时候,第一个随机数总是固定,而且常常是最小的那个值,下面我就简要的说明一下吧,说得不好,还请谅解.我现在使用的4.0版本的LUA,看的代码是5.0的,呵呵 LUA4. ...
- sublime text3搭建react native
Sublime Text 3 搭建React.js开发环境 Sublime有很强的自定义功能,插件库很庞大,针对新语言插件更新很快,配合使用可以快速搭建适配语言的开发环境. 1. babel-subl ...
- JSON—序列化
表单数据的序列化 用SerializeArray()将有效控件序列化为JSON对象数组? 包含name和value两个属性 SerializeArray()检测一组表单元素中的有效控件? 1.没有 ...
- 23最小生成树之Kruskal算法
图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...
- css3 弹性盒模型 变化
如果你使用google搜索Flexbox,你会发现很多过时的信息.这里将告诉你如何迅速的辨别你需要的信息. 如果你正在查找有关于Flexbox的博客资料,你看到了“display:box;”或者“bo ...
- jq table页二级联动
<div class="layerRtb layerRtb-threecolumn"> <div class="clearfix layerRtb-he ...
- Python: 用shell通配符匹配字符串,fnmatch/fnmatchcase
问题:想使用Unix Shell 中常用的通配符(比如*.py , Dat[0-9]*.csv 等) 去匹配文本字符串 解决方案: 1. fnmatch 模块提供了两个函数—— fnmatch() 和 ...
- Java设计模式应用——责任链模式
生产一个产品,需要依次执行多个步骤,才能完成,那么是使用责任链模式则是极好的. 在性能告警模块开发过程中,创建一条告警规则需要执行阈值解析,中间表生成,流任务生成,规则入库,告警事件入库等诸多操作.如 ...
- 拉取远程仓库到本地错误The authenticity of host 'github.com (13.229.188.59)' can't be established.
1.个人在github上面创建了仓库,通过本地的git拉取远程仓库到本地报错信息如下: 这是因为Git使用SSH连接,而SSH第一次连接需要验证GitHub服务器的Key.确认GitHub的Key的指 ...