http://www.lydsy.com/JudgeOnline/problem.php?id=1005

题意:

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

思路:
又了解了一个神奇的东西,prufer数列!!!

prufer数列,可以用来解一些关于无根树计数的问题。

prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码。

(1)无根树转化为prufer序列。

首先定义无根树中度数为1的节点是叶子节点。

找到编号最小的叶子并删除,序列中添加与之相连的节点编号,重复执行直到只剩下2个节点。

如下图的树对应的prufer序列就是3,5,1,3。

具体实现可以用一个set搞定,维护度数为1的节点。复杂度O(nlogn)。

(2)prufer序列转化为无根树。

设点集V={1,2,3,...,n},每次取出prufer序列中最前面的元素u,在V中找到编号最小的没有在prufer序列中出现的元素v,给u,v连边然后分别删除,最后在V中剩下两个节点,给它们连边。最终得到的就是无根树。

具体实现也可以用一个set,维护prufer序列中没有出现的编号。复杂度O(nlogn)。

最后有一个很重要的性质就是prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1。

接下来就是按照这个式子计算即可,用java计算会比较方便。

 import java.math.*;
import java.util.Scanner; public class Main{
static int n;
static int d[]=new int[1005];
static BigInteger c[]=new BigInteger[1005];
static BigInteger ans; public static void main(String[] args){
Scanner in=new Scanner(System.in);
int flag=0, tot=0, cnt=0;
while(in.hasNextInt()){
n=in.nextInt();
for(int i=0;i<n;i++){
d[i]=in.nextInt();
if(d[i]==0 || d[i]>n-1) flag=1;
if(d[i]==-1) continue;
tot+=d[i]-1;
cnt++;
} if(flag==1) {System.out.println("0");continue;}
c[0]=BigInteger.valueOf(1);
for(int i=1;i<=n;i++) c[i]=c[i-1].multiply(BigInteger.valueOf(i));
ans=c[n-2];
for(int i=1;i<=n-2-tot;i++) ans=ans.multiply(BigInteger.valueOf(n-cnt));
ans=ans.divide(c[n-2-tot]);
for(int i=0;i<n;i++){
if(d[i]==-1) continue;
ans=ans.divide(c[d[i]-1]);
}
System.out.println(ans);
}
in.close();
}
}

BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)的更多相关文章

  1. BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)

    题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...

  2. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  3. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  4. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  5. BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  6. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

随机推荐

  1. 【剑指offer】旋转数组的最小数字

    一.题目: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个 ...

  2. SVN出现xcrun: error: invalid active developer path(Mac)

    Mac升级了系统,配置PHPStorm的SVN,出现如下错误: 具体提示的内容是:xcrun: error: invalid active developer path (/Library/Devel ...

  3. PAT 1026 Table Tennis[比较难]

    1026 Table Tennis (30)(30 分) A table tennis club has N tables available to the public. The tables ar ...

  4. 1025 PAT Ranking[排序][一般]

    1025 PAT Ranking (25)(25 分) Programming Ability Test (PAT) is organized by the College of Computer S ...

  5. mysql 实时统计脚本 QPS,TPS和线程连接数等

    #!/bin/bash mysqladmin -uroot -p'root' extended-status -i1|awk 'BEGIN{local_switch=0;print "QPS ...

  6. Pandas之Dropna滤除缺失数据

    import pandas as pd import numpy as np from numpy import nan as NaN 一.处理Series对象 通过dropna()滤除缺失数据 fr ...

  7. Matlab中图像处理实例:灰度变换,空域滤波,频域滤波,傅里叶变换的实现

    http://blog.sciencenet.cn/blog-95484-803140.html % %图像灰度变换 % f = imread('E:\2013第一学期课程\媒体计算\实验一\Img\ ...

  8. C#导出Excel总结

    一.asp.net中导出Execl的方法:在asp.net中导出Execl有两种方法,一种是将导出的文件存放在服务器某个文件夹下面,然后将文件地址输出在浏览器上:一种是将文件直接将文件输出流写给浏览器 ...

  9. http://ttaa.210997.com/恶意修改主页

    嗯,,,,之前似乎写过关于篡改主页的文章. 但今天下了个游戏,然后不小心又出现了这个问题. 我先用原始的方式检测了一下(比如检索注册表之类的),但这个不奏效. 省略一些查看问题的方式. 最终得出:新的 ...

  10. Java设计模式应用——工厂模式

    工厂模式有三种:简单工厂.工厂方法.抽象工厂 一. 抽象工厂 1. 一个可以生产多种产品的工厂: 2. 不改变工厂无法生产新的产品. package com.coshaho.learn.factory ...