109. Magic of David Copperfield II

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

The well-known magician David Copperfield loves lo show the following trick: a square with N rows and N columns of different pictures appears on a TV screen, Let us number all the pictures in the following order:

1 2 ... N
... ... ... ...
N*(N-1)+1 N*(N-1)+2 ... N*N

Each member of the audience is asked to put a finger on the upper left picture (i.e., picture number one) and The Magic begins: the magician tells the audience to move the finger K1 times through the pictures (each move is a shift of the finger to the adjacent picture up, down, left or right provided that there is a picture to move to), then with a slight movement of his hand he removes some of the pictures with an exclamation "You are not there!", and ... it is true - your finger is not pointing to any of the pictures removed. Then again, he tells the audience to make K2 moves, and so on. At the end he removes all the pictures but one and smiling triumphantly declares, "I've caught you" (applause).

Just now, David is trying to repeat this trick. Unfortunately, he had-a hard day before, and you know how hard to conjure with a headache. You have to write a program that will help David to make his trick.

Input

The input file contains a single integer number N (1<N<101).

Output

Your program should write the following lines with numbers to the output file:
K1 X1,1 X1,2 ... X1,m1
K2 X2,1 X2,2 ... X2,m2
...
Ke Xe,1 Xe,2 ... Xe,me
where Ki is a number of moves the audience should make on the i-th turn (N<=Ki<300). All Ki, should be different (i.e. Ki<>Kj when i<>j). Xi,1 Xi,2 ... Xi,mi are the numbers of the pictures David should remove after the audience will make Ki moves (the number of the pictures removed is arbitrary, but each picture should be listed only once, and at least one picture should be removed on each turn).
A description of the every next turn should begin with a new line. All numbers on each line should be separated by one or more spaces. After e iterations, all pictures except one should be removed.

Sample Input

3

Sample Output

3 1 3 7 9
5 2 4 6 8 一开始被题意吓住了,但是画一画就能发现,
只要是奇数步,就不能停留在原位,要是把整个迷宫划分成国际棋盘的黑白格,那么奇数步必然只能转移到异色格上,
注意到这点而且题目是special judge ,只需注意随时保持还没被染色的在一块大联通域里面就行了,(要是被孤立了那么玩家就不能再走,魔术师就算是没有完成魔术,要是多个区块就不知道玩家到底在哪个区块了,这样无法消除到只有一个含一块的区块)
这里为了保证这一点我使用的是从外向里,每次推一层的方法,假设出发点(0,0)是白格(计算中使用了二维坐标,结果转化为i*n+j+1)
对于里面的第i层,先消去上一层i-1层未涂色的白格,再消去i层可以消去的白格(相邻的黑格都有两个及以上个没有被消去的白格相邻),最后新建一个操作,消去i层的所有黑格(这时候i层的白格不会受影响,因为还有i+1层)

大致染色过程如图
因为染色操作最多有(n/2)*2,开头使用n也不会超出300的操作数
W原因:没有注意到ki<300
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=102;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
bool vis[maxn][maxn];
int n;
int heap1[maxn*maxn],len1,heap2[maxn*maxn],len2,heapt[maxn*maxn],lent;//heap1 第i圈可以消去的白 heap2 第i-1圈没有消掉的白 heapt 第i圈的第二个操作消去的黑格
bool oneentry(int x,int y){//只有一个出口
int fl=0;
for(int i=0;i<4;i++){
int tx=x+dx[i],ty=y+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&!vis[tx][ty]){
fl++;
}
}
return fl<=1;
}
bool avail(int x,int y){//是否会抓住顾客
for(int i=0;i<4;i++){
int tx=x+dx[i],ty=y+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&!vis[tx][ty]){
if(oneentry(tx,ty))return false;
}
}
return true;
}
int main(){
while(scanf("%d",&n)==1){
memset(vis,0,sizeof(vis));
len1=len2=lent=0;
int num=n&1?n:n+1;
for(int i=0;i<n/2;i++){
printf("%d ",num);num+=2;
for(int k=0;k<len2;k++)printf("%d ",heap2[k]);//上层未涂色白格
len1=len2=lent=0;
int x=i,y=i;
for(int dr=0;dr<4;dr++){
for(int j=0;j<n-2*i-1;j++){
if((x+y)&1){heapt[lent++]=x*n+y+1;vis[x][y]=true;}//黑格
else if(avail(x,y)){heap1[len1++]=x*n+y+1;vis[x][y]=true;}//暂时不能选的白格
else {heap2[len2++]=x*n+y+1;vis[x][y]=true;}//可选择白格
x+=dx[dr];
y+=dy[dr];
}
}
for(int k=0;k<len1;k++){
printf("%d%c",heap1[k],k==len1-1?'\n':' ');//涂白格
}
printf("%d ",num);num+=2;
for(int k=0;k<lent;k++)printf("%d%c",heapt[k],k==lent-1?'\n':' ');//涂黑格
}
}
return 0;
}

  


109. Magic of David Copperfield II 构造 难度:2的更多相关文章

  1. 构造 - SGU 109 Magic of David Copperfield II

    Magic of David Copperfield II Problem's Link Mean: 略 analyse: 若i+j为奇数则称(i,j)为奇格,否则称(i+j)为偶格,显然每一次报数后 ...

  2. sgu 109 Magic of David Copperfield II

    这个题意一开始没弄明白,后来看的题解才知道这道题是怎么回事,这道题要是自己想难度很大…… 你一开始位于(1,1)这个点,你可以走k步,n <= k < 300,由于你是随机的走的, 所以你 ...

  3. Magic of David Copperfield II(奇偶性)

    题目大意:这是一个魔术游戏,首先把你的手指放在一个左上角的格子里面,然后魔术师说你可以移动K1步,移动完之后,他会删除一些方格,并且说,你肯定不在这里,删除的方格不可以再去了,然后让你再走K2步,继续 ...

  4. UVa LA 4094 WonderTeam 构造 难度: 1

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  5. BZOJ3098: Hash Killer II(构造)

    Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 2162  Solved: 1140[Submit][Status][ ...

  6. Codeforces 346C Number Transformation II 构造

    题目链接:点击打开链接 = = 990+ms卡过 #include<stdio.h> #include<iostream> #include<string.h> # ...

  7. POJ 3295 Tautology 构造 难度:1

    Tautology Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9580   Accepted: 3640 Descrip ...

  8. SGU 138. Games of Chess 构造 难度:2

    138. Games of Chess time limit per test: 0.25 sec. memory limit per test: 4096 KB N friends gathered ...

  9. sgu 137. Funny Strings 线性同余,数论,构造 难度:3

    137. Funny Strings time limit per test: 0.25 sec. memory limit per test: 4096 KB Let's consider a st ...

随机推荐

  1. Python 中的几种矩阵乘法 np.dot, np.multiply, *【转】

    本文转载自:https://blog.csdn.net/u012609509/article/details/70230204 Python中的几种矩阵乘法1. 同线性代数中矩阵乘法的定义: np.d ...

  2. about MySQL Workbench的基本使用及运用操作

    http://blog.csdn.net/dongdong9223/article/details/48318877   <大神整理的更好!(评论里还有其他整理的) ↑ 使用MySQL Work ...

  3. Ubuntu上 配置Eclipse:安装CDT

    在最新的 Ubuntu Kylin 16.04 中安装了eclipse,在纠结了很久的网络问题之后,开始了eclipse的配置以便在上面运行ns3. 在官方网站上安装完 eclipse LUNA 之后 ...

  4. UVa 10723 电子人的基因(LCS)

    https://vjudge.net/problem/UVA-10723 题意: 输入两个A~Z组成的字符串,找一个最短的串,使得输入的两个串均是它的子序列,另外还需要统计长度最短的串的个数. 思路: ...

  5. 为什么我的电脑win系统没有便笺功能?为什么我在开始菜单里找不到便笺功能?

    有些网友表示,为什么我的电脑没有便笺功能?为什么我在开始菜单里找不到便笺功能? 从问题可以基本判断出来,这些网友使用的Win7版本有可能是买笔记本或者台式电脑时预装的Win7家庭普通版或者Win7精简 ...

  6. FAILED Selenium2Library

    FAILED Selenium2Library Importing test library 'Selenium2Library' failed: ImportError: cannot import ...

  7. React Native控件之Switch开关

    这个组件很简单 主要有两个属性:开.关....呵呵哒,,, import React,{Component}from 'react'; import { AppRegistry, StyleSheet ...

  8. Java中的RTTI

    RTTI可以帮助我们在运行时识别对象和类的信息. 一般传统的RTTI有三种实现方式: 1. 向上转型或向下转型(upcasting and downcasting),在java中,向下转型(父类转成子 ...

  9. Python四大主流网络编程框架

    目前的4种主流Python网络框架:Django.Tornado.Flask.Twisted.

  10. python profile性能分析

    #! /usr/bin/env python # encoding=utf8 import profile def func1(): for i in range(1000): pass def fu ...