qiime 本身不提供聚类的算法,它只是对其他聚otu软件的封装
根据聚类软件的算法,分成了3个方向:
de novo: pick_de_novo_otus.py
closed-reference: pick_closed_reference_otus.py
open-reference OTU: pick_open_reference_otus.py
不同算法的优缺点:
de novo: pick_de_novo_otus.py
优点: 所有的reads 都会聚类
缺点:不支持并行,计算速度慢,当reads > 10M 时就会非常慢
使用场景: 研究不常见的marker 基因
closed-reference: pick_closed_reference_otus.py
和数据库比对,比对不上数据库的reasd 直接丢掉,数据库中reads 带有taxonpmy 注释, 可以方便的进行taxonomy 注释
优点:完全并行, 速度快;tree 或者taxonomy 注释更好, 数据库中的otu分类效果都很好
缺点: 不能检测数据库中没有的物种
Because reads that don’t hit the reference sequence collection are discarded, your analyses only focus on the diversity that you “already know about”
open-reference OTU: pick_open_reference_otus.py
首先和数据库比对,没有比对上的reads 在使用denovo的聚类策略进行聚otu
open-reference OTU 是推荐的聚otu策略
优点: 所有reads都会聚类,部分并行,速度较快
缺点: 当新物种较多时,速度会很慢
我们最常用的是open-reference OTU聚类, 对应的脚本是 pick_open_reference_otus.py
可以看做一个pipieline, 共有6个步骤,其中前4步为OTU 聚类,后2步为产生OTU table 和 聚类的tree
Step 1) Prefiltering and picking closed reference OTUs
The first step is an optional prefiltering of the input fasta file to remove
sequences that do not hit the reference database with a given sequence
identity (PREFILTER_PERCENT_ID). This step can take a very long time, so is
disabled by default. The prefilter parameters can be changed with the options:
--prefilter_refseqs_fp
--prefilter_percent_id
This filtering is accomplished by picking closed reference OTUs at the specified
prefilter percent id to produce:
prefilter_otus/seqs_otus.log
prefilter_otus/seqs_otus.txt
prefilter_otus/seqs_failures.txt
prefilter_otus/seqs_clusters.uc
Next, the seqs_failures.txt file is used to remove these failed sequences from
the original input fasta file to produce:
prefilter_otus/prefiltered_seqs.fna
This prefiltered_seqs.fna file is then considered to contain the reads
of the marker gene of interest, rather than spurious reads such as host
genomic sequence or sequencing artifacts
首先对序列进行一个预处理,给定一个比对相似度 ,采用close-reference OTU 方法删除输入序列中不能比对上数据库的序列,这一步是可选的
如果执行了预处理,会产生 prefilter_otus/prefiltered_seqs.fna 文件,如果不执行,直接拿 input.fasta 去进行下一步的处理
If prefiltering is applied, this step progresses with the prefiltered_seqs.fna.
Otherwise it progresses with the input file. The Step 1 closed reference OTU
picking is done against the supplied reference database. This command produces:
step1_otus/_clusters.uc
step1_otus/_failures.txt
step1_otus/_otus.log
step1_otus/_otus.txt
然后采用close-reference OTU的方式聚OTU
The representative sequence for each of the Step 1 picked OTUs are selected to
produce:
step1_otus/step1_rep_set.fna
Next, the sequences that failed to hit the reference database in Step 1 are
filtered from the Step 1 input fasta file to produce:
step1_otus/failures.fasta
Then the failures.fasta file is randomly subsampled to PERCENT_SUBSAMPLE of
the sequences to produce:
step1_otus/subsampled_failures.fna.
Modifying PERCENT_SUBSAMPLE can have a big effect on run time for this workflow,
but will not alter the final OTUs.
对于没能比对上数据库的read, 会生成 step1_otus/failures.fasta 文件,同时随机抽取一部分reads, 产生step1_otus/subsampled_failures.fna 文件
修改 PERCENT_SUBSAMPLE 参数,可以加速运行时间
Step 2) The subsampled_failures.fna are next clustered de novo, and each cluster
centroid is then chosen as a "new reference sequence" for use as the reference
database in Step 3, to produce:
step2_otus/subsampled_seqs_clusters.uc
step2_otus/subsampled_seqs_otus.log
step2_otus/subsampled_seqs_otus.txt
step2_otus/step2_rep_set.fna
对于第一步产生的step1_otus/subsampled_failures.fna 文件,使用denovo 聚类的方式对这部分序列聚类,产生新的参考序列
Step 3) Pick Closed Reference OTUs against Step 2 de novo OTUs
Closed reference OTU picking is performed using the failures.fasta file created
in Step 1 against the 'reference' de novo database created in Step 2 to produce:
step3_otus/failures_seqs_clusters.uc
step3_otus/failures_seqs_failures.txt
step3_otus/failures_seqs_otus.log
step3_otus/failures_seqs_otus.txt
用step1_otus/failures.fasta 比对step2_otus/step2_rep_set.fna 进行比对
Assuming the user has NOT passed the --suppress_step4 flag:
The sequences which failed to hit the reference database in Step 3 are removed
from the Step 3 input fasta file to produce:
step3_otus/failures_failures.fasta
没有比对上的序列会产生step3_otus/failures_failures.fasta 文件
Step 4) Additional de novo OTU picking
It is assumed by this point that the majority of sequences have been assigned
to an OTU, and thus the sequence count of failures_failures.fasta is small
enough that de novo OTU picking is computationally feasible. However, depending
on the sequences being used, it might be that the failures_failures.fasta file
is still prohibitively large for de novo clustering, and the jobs might take
too long to finish. In this case it is likely that the user would want to pass
the --suppress_step4 flag to avoid this additional de novo step.
A final round of de novo OTU picking is done on the failures_failures.fasta file
to produce:
step4_otus/failures_failures_cluster.uc
step4_otus/failures_failures_otus.log
step4_otus/failures_failures_otus.txt
用第三步产生failures_failures.fasta 文件再次聚OTU
Step 5) Produce the final OTU map and rep set
If Step 4 is completed, the OTU maps from Step 1, Step 3, and Step 4 are
concatenated to produce:
final_otu_map.txt
如果第四步执行了的话,将1,3,4 产生的map 文件合并起来,产生final_otu_map.txt 文件
If Step 4 was not completed, the OTU maps from Steps 1 and Step 3 are
concatenated together to produce:
final_otu_map.txt
如果第四步没有执行,将1,3产生的map 文件合并起来,产生final_otu_map.txt 文件
Next, the minimum specified OTU size required to keep an OTU is specified with
the --min_otu_size flag. For example, if the user left the --min_otu_size as the
default value of 2, requiring each OTU to contain at least 2 sequences, the any
OTUs which failed to meet this criteria would be removed from the
final_otu_map.txt to produce:
final_otu_map_mc2.txt
If --min_otu_size 10 was passed, it would produce:
final_otu_map_mc10.txt
The final_otu_map_mc2.txt is used to build the final representative set:
rep_set.fna
-min_otu_size 对OTU进行过滤,产生final_otu_map_mc2.txt 文件已经对应的代表序列 rep_set.fna
Step 6) Making the OTU tables and trees
An OTU table is built using the final_otu_map_mc2.txt file to produce:
otu_table_mc2.biom
由final_otu_map_mc2.txt 产生 otu_table_mc2.biom OTU table
As long as the --suppress_taxonomy_assignment flag is NOT passed,
then taxonomy will be assigned to each of the representative sequences
in the final rep_set produced in Step 5, producing:
rep_set_tax_assignments.log
rep_set_tax_assignments.txt
This taxonomic metadata is then added to the otu_table_mc2.biom to produce:
otu_table_mc_w_tax.biom
对otu 代表序列进行 taxonomy 注释, 产生 otu_table_mc_w_tax.biom 文件
As long as the --suppress_align_and_tree is NOT passed, then the rep_set.fna
file will be used to align the sequences and build the phylogenetic tree,
which includes the de novo OTUs. Any sequences that fail to align are
omitted from the OTU table and tree to produce:
otu_table_mc_no_pynast_failures.biom
rep_set.tre
对otu代表序列进行多序列比对,构建进化树, 产生 rep_set.tre 文件
If both --suppress_taxonomy_assignment and --suppress_align_and_tree are
NOT passed, the script will produce:
otu_table_mc_w_tax_no_pynast_failures.biom
It is important to remember that with a large workflow script like this that
the user can jump into intermediate steps. For example, imagine that for some
reason the script was interrupted on Step 2, and the user did not want to go
through the process of re-picking OTUs as was done in Step 1. They can simply
rerun the script and pass in the:
--step_1_otu_map_fp
--step1_failures_fasta_fp
parameters, and the script will continue with Steps 2 - 4.
对于大型的脚本,要求可以在大致的步骤之间跳转,不执行前面的步骤
**Note:** If most or all of your sequences are failing to hit the reference
during the prefiltering or closed-reference OTU picking steps, your sequences
may be in the reverse orientation with respect to your reference database. To
address this, you should add the following line to your parameters file
(creating one, if necessary) and pass this file as -p:
pick_otus:enable_rev_strand_match True
Be aware that this doubles the amount of memory used in these steps of the
workflow.
如果原始序列中有很大一部分序列,没有比对上数据库中的序列,可能的原因是输入序列与数据库中的是反向互补的,可以添加 pick_otus:enable_rev_strand_match True 参数
但是这个参数会导致内存加倍
基本用法:
pick_open_reference_otus.py -i $PWD/seqs1.fna -r $PWD/refseqs.fna -o $PWD/ucrss_sortmerna_sumaclust/ -p $PWD/ucrss_smr_suma_params.txt -m sortmerna_sumaclust
-i : 输入的原始序列,fasta格式
-r : 数据库中的序列,fasta格式, 默认采用的是 greengene /usr/local/lib/python2.7/site-packages/qiime_default_r eference/gg_13_8_otus/rep_set/97_otus.fasta
-o : 输出结果的目录
-p : 参数对应的文件
-m : 聚类的软件,可选的有'uclust', 'usearch61', 'sortmerna_sumaclust', 默认为 uclust
- 扩增子分析解读4去嵌合体 非细菌序列 生成代表性序列和OTU表
本节课程,需要先完成 扩增子分析解读1质控 实验设计 双端序列合并 2提取barcode 质控及样品拆分 切除扩增引物 3格式转换 去冗余 聚类 先看一下扩增子分析的整体流程,从下向上逐层分析 分 ...
- QIIME2使用方法
激活qiime2的执行环境:source activate qiime2-2019.4如何查看conda已有的环境:conda info -e 以下分析流程参考:https://docs.qiime2 ...
- Oracle索引梳理系列(九)- 浅谈聚簇因子对索引使用的影响及优化方法
版权声明:本文发布于http://www.cnblogs.com/yumiko/,版权由Yumiko_sunny所有,欢迎转载.转载时,请在文章明显位置注明原文链接.若在未经作者同意的情况下,将本文内 ...
- oracle的散列聚簇表
在簇表中,Oracle使用存储在索引中的键值来定位表中的行, 而在散列聚簇表中,使用了散列函数代替了簇索引,先通过内部函数或者自定义的函数进行散列计算,然后再将计算得到的码值用于定位表中的行. 创建散 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- 聚簇(Cluster)和聚簇表(Cluster Table)
聚簇(Cluster)和聚簇表(Cluster Table) 时间:2010-03-13 23:12来源:OralanDBA.CN 作者:AlanSawyer 点击:157次 1.创建聚簇 icmad ...
- MDCC为移动开发者服务:一看、一聊、一聚
MDCC为移动开发者服务:一看.一聊.一聚-CSDN.NET MDCC为移动开发者服务:一看.一聊.一聚 发表于2013-11-05 20:54| 2698次阅读| 来源CSDN| 6 ...
- 聚币网API[Python2版]
聚币 现货 API [Python2版] 一.utils.py,基础类,包括HTTP 请求.签名等 # -*- coding: utf-8 -*- import hashlib import hmac ...
- 聚簇(或者叫做聚集,cluster)索引和非聚簇索引
字典的拼音目录就是聚簇(cluster)索引,笔画目录就是非聚簇索引.这样查询“G到M的汉字”就非常快,而查询“6划到8划的字”则慢. 聚簇索引是一种特殊索引,它使数据按照索引的排序顺序存放表中.聚簇 ...
随机推荐
- 使用Maven对JAVA程序打包-带主类、带依赖【转】
很多时候,我们需要对编写的程序进行打包,这个时候,我们可以借助一些项目构建工具,如maven, sbt, ant等,这里我使用的是maven. 打包成可执行有主类的jar包(jar包中无依赖) 以下是 ...
- Beginning SDL 2.0(2) TwinklebearDev SDL 2.0 Tutorial
本文整理并简要介绍了TwinklebearDev SDL 2.0 Tutorial相关内容(以下简称TDSDLTutorial). 这是作为我学习并了解SDL2.0功能一篇学习总结. TDSDLTut ...
- Context.startActivity出现AndroidRuntimeException
转:http://hi.baidu.com/huaxinchang/item/e1a771cf4d424312b77a2416 昨天做了一个Activity的启动动画,效果是点击桌面图标先出现动画后启 ...
- Adobe Acrobat Reader DC 离线安装包
https://blog.csdn.net/qqduxingzhe/article/details/77876336 ************************************* win ...
- js实现复制功能,将需要复制的内容放入剪切板上
方法一:使用ZeroClipboard.js插件 <html> <head> <meta charset="UTF-8"> </head& ...
- Scapy:局域网MAC地址扫描脚本
转载自:http://blog.sina.com.cn/s/blog_4b5039210100gn6k.html 未测试,回头研究研究. 用python+scapy写的,只要双击.py文件即可,扫描当 ...
- 基于html5可拖拽图片循环滚动切换
分享一款基于html5可拖拽图片循环滚动切换.这是一款支持手机端拖拽切换的网站图片循环滚动特效.效果图如下: 在线预览 源码下载 实现的代码. html代码: <div id="s ...
- PHP重载以及Laravel门面Facade
目录 重载的概念 魔术方法中的重载 属性重载 方法重载 Laravel中的Facade 扩展 谈谈__invoke Laravel提供了许多易用的Facade,让我们用起来特步顺手,那么这些Facad ...
- 一键安装mysql
#!/bin/bash # # Rrogram: # install mysql # History: # -- luoqi v0. release # email: # @qq.com #以下rpm ...
- Virtual DOM 虚拟DOM的理解(转)
作者:戴嘉华 转载请注明出处并保留原文链接( #13 )和作者信息. 目录: 1 前言 2 对前端应用状态管理思考 3 Virtual DOM 算法 4 算法实现 4.1 步骤一:用JS对象模拟DOM ...