博一下学期:
1.week1,2018.2.26
2006-Extreme learning machine: theory and applications
期刊来源:Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
2.week2,2018.3.5
2017-3d-prnn: Generating shape primitives with recurrent neural networks
University of Illinois at Urbana-Champaign, Adobe Research(美国伊利诺伊大学厄巴纳 - 香槟分校,Adobe研究院)
期刊来源:Zou C, Yumer E, Yang J, et al. 3d-prnn: Generating shape primitives with recurrent neural networks[C]//The IEEE International Conference on Computer Vision (ICCV). 2017.
3.week3,2018.3.12;week7,2018.4.9;week8,2018.4.16;week9,2018.4.23
2017-3D object reconstruction from a single depth view with adversarial learning
University of Oxford,University of Warwick,Heriot-Watt University(英国牛津大学,华威大学,赫瑞瓦特大学)
期刊来源:Yang B, Wen H, Wang S, et al. 3D object reconstruction from a single depth view with adversarial learning[J]. ICCV, 2017.
2018-3D Object Dense Reconstruction from a Single Depth View
期刊来源:Yang B, Rosa S, Markham A, et al. 3D Object Dense Reconstruction from a Single Depth View[J]. arXiv preprint arXiv:1802.00411, 2018.
Improved training of wasserstein gans
Montreal Institute for Learning Algorithms,Courant Institute of Mathematical Sciences,CIFAR Fellow(美国科技巨头蒙特利尔学习算法研究所,库特数学科学研究所,CIFAR研究员)
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. 2017: 5769-5779.
Generative adversarial nets
期刊来源:Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
4.week4,2018.3.19
2017-Hierarchical surface prediction for 3d object reconstruction
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:Häne C, Tulsiani S, Malik J. Hierarchical surface prediction for 3d object reconstruction[J]. arXiv preprint arXiv:1704.00710, 2017.
2017-Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:Tatarchenko M, Dosovitskiy A, Brox T. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs[J]. CoRR, abs/1703.09438, 2017.
 
5.week5,2018.3.26
2017-3D shape reconstruction from sketches via multi-view convolutional networks
University of Massachusetts - Amherst(美国麻省大学阿默斯特分校)
期刊来源:Lun Z, Gadelha M, Kalogerakis E, et al. 3D shape reconstruction from sketches via multi-view convolutional networks[J]. arXiv preprint arXiv:1707.06375, 2017.
2016-3d shape induction from 2d views of multiple objects
University of Massachusetts - Amherst(美国麻省大学阿默斯特分校)
期刊来源:Gadelha M, Maji S, Wang R. 3d shape induction from 2d views of multiple objects[J]. arXiv preprint arXiv:1612.05872, 2016.
2017-Multi-view 3D face reconstruction with deep recurrent neural networks
Computational Biomedicine Lab,University of Houston(美国休斯顿大学,计算生物医学实验室)
期刊来源:Dou P, Kakadiaris I A. Multi-view 3D face reconstruction with deep recurrent neural networks[C]//Biometrics (IJCB), 2017 IEEE International Joint Conference on. IEEE, 2017: 483-492.
2017-End-to-end 3D face reconstruction with deep neural networks
Computational Biomedicine Lab,University of Houston(美国休斯顿大学,计算生物医学实验室)
期刊来源:Dou P, Shah S K, Kakadiaris I A. End-to-end 3D face reconstruction with deep neural networks[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii. 2017, 5.
6.week6,2018.4.2
2017-Weakly supervised generative adversarial networks for 3d reconstruction
Stanford University(美国斯坦福大学)
期刊来源:Gwak J Y, Choy C B, Garg A, et al. Weakly supervised generative adversarial networks for 3d reconstruction[J]. arXiv preprint arXiv:1705.10904, 2017.
2016-Unsupervised learning of 3d structure from images
NYU Multimedia and Visual Computing Lab(纽约大学,多媒体和视觉计算实验室)
Courant Institute of Mathematical Science(库兰特学院,数学科学研究所)
NYU Tandon School of Engineering, USA(纽约大学工学院)
期刊来源:Rezende D J, Eslami S M A, Mohamed S, et al. Unsupervised learning of 3d structure from images[C]//Advances In Neural Information Processing Systems. 2016: 4996-5004.
2017-Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning
Google DeepMind
期刊来源:Wang L, Fang Y. Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning[J]. arXiv preprint arXiv:1711.09312, 2017.
2017-Began: Boundary equilibrium generative adversarial networks
Google
期刊来源:Berthelot D, Schumm T, Metz L. Began: Boundary equilibrium generative adversarial networks[J]. arXiv preprint arXiv:1703.10717, 2017.
7.week9,2018.4.23
2016-Learning a predictable and generative vector representation for objects
Robotics Institute, Carnegie Mellon University, MITRE Corporation(卡内基梅隆大学,机器人研究所,MITRE公司)
期刊来源:Girdhar R, Fouhey D F, Rodriguez M, et al. Learning a predictable and generative vector representation for objects[C]//European Conference on Computer Vision. Springer, Cham, 2016: 484-499.
2017-Marrnet: 3d shape reconstruction via 2.5 d sketches
MIT CSAIL,ShanghaiTech University,Shanghai Jiao Tong University(麻省理工学院 计算机科学与人工智能实验室,上海科技大学,上海交通大学)
期刊来源:Wu J, Wang Y, Xue T, et al. Marrnet: 3d shape reconstruction via 2.5 d sketches[C]//Advances In Neural Information Processing Systems. 2017: 540-550.
2016-An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
National University of DefenseTechnology(国防科技大学)
期刊来源:Wang Y, Xie Z, Xu K, et al. An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning[J]. Neurocomputing, 2016, 174: 988-998.
2018-On the convergence of adam and beyond
Google New York
期刊来源:Reddi S J, Kale S, Kumar S. On the convergence of adam and beyond[C]//International Conference on Learning Representations. 2018.
8.week13,2018.5.21
2018-Spherical CNNs
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Cohen T S, Geiger M, Koehler J, et al. Spherical CNNs[J]. ICLR, 2018.
2016-Group equivariant convolutional networks
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Cohen T, Welling M. Group equivariant convolutional networks[C]//International Conference on Machine Learning. 2016: 2990-2999.
2017-Learning SO(3) Equivariant Representations with Spherical CNNs
University of Pennsylvania,Google(美国宾夕法尼亚大学)
期刊来源:Esteves C, Allen-Blanchette C, Makadia A, et al. Learning SO(3) Equivariant Representations with Spherical CNNs[J]. 2017.
2018-HexaConv
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Hoogeboom E, Peters J W T, Cohen T S, et al. HexaConv[J]. arXiv preprint arXiv:1803.02108, 2018.
9.week15,2018.6.4
2016-View synthesis by appearance flow
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:Zhou T, Tulsiani S, Sun W, et al. View synthesis by appearance flow[C]//European conference on computer vision. Springer, Cham, 2016: 286-301.
												
												
								- phd文献阅读日志-博一上学期
		
为了记住并提醒自己阅读文献,进行了记录(这些论文都是我看过理解的),论文一直在更新中. 博一上学期: 1.week 6,2017.10.16 2014-Automatic Semantic Model ...
		 
						- 文献阅读笔记——group sparsity and geometry constrained dictionary
		
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...
		 
						- Week2-作业1:阅读与博客
		
Week2-作业1:阅读与博客 第一章 :概论 1. 原文如下: 移山公司程序员阿超的宝贝儿子上了小学二年级,老师让家长每天出30道加减法题目给孩子做.阿超想写一个小程序来做这件事,具体实现可以采用很 ...
		 
						- 文献阅读 | The single-cell transcriptional landscape of mammalian organogenesis | 器官形成 | 单细胞转录组
		
The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想 ...
		 
						- 空间插值文献阅读(Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall)
		
空间插值技术应用必读论文---P. Goovaerts, Geostatistical approaches for incorporating elevation into the spatial  ...
		 
						- 文献阅读方法 & 如何阅读英文文献 - 施一公(转)
		
附: 如何看懂英文文献?(好) 看需求,分层次 如何总结和整理学术文献? Mendeley & Everything 如何在pdf文献上做笔记?福晰阅读器 自己感悟: 一篇专业文献通常会有几页 ...
		 
						- RTCM32编解码中的一些概念及相关文献阅读
		
1. IODC和 IODE ——  导航电文相关.iode/iodc是在GPS系统的ICD2中定义的参数,iode指星历数据事件,iodc指星钟数据事件. IOD 是 issue of data ,数 ...
		 
						- 优雅的阅读CSDN博客
		
CSDN现在似乎不强制登录了2333.但是广告多了也是碍眼的不行...将下列css添加到stylus中就行了. 代码转自xzz的博客. 自己修改了一下,屏蔽了登录弹出框. .article_conte ...
		 
						- AutoML文献阅读
		
逐步会更新阅读过的AutoML文献(其实是NAS),以及自己的一些思考 Progressive Neural Architecture Search,2018ECCV的文章: 目的是:Speed up ...
		 
		
	
随机推荐
	
									- Spring Boot 中使用WebJars
			
WebJars能使Maven的依赖管理支持OSS的JavaScript库/CSS库,比如jQuery.Bootstrap等: WebJars是将Web前端Javascript和CSS等资源打包成Jav ...
			 
						- html页面去掉滚动条
			
有时候特别需要,个别网页要去掉横向滚动条和竖向滚动条,那该怎么去掉呢,很简单,看代码: 让竖条没有: <body style=`overflow:-Scroll;overflow-y:hidde ...
			 
						- 问题-DelphiXE10.1 FireDAC联接oracle数据库方法
			
问题现象:安装oracle后,安装Delphi10.1,放FDConnection1时,选择"Ora"驱动时,提示如下: [FireDAC][Phys][Ora]-315. Can ...
			 
						- java结合js获取验证码
			
框架springmvc 1.后台java代码: package com.fh.controller.system.secCode; import java.awt.Color; import java ...
			 
						- LInux 文件系统 tmpfs 分区不显示解决
			
因为不小心把 kernel 的 tmpfs 的选项去掉,导致 文件系统内的 tmpfs 分区不显示. kernel 打开如下选项即可 在文件系统内就会有相关显示
			 
						- FileTable使用总结
			
sqlsever2012以后才开始支持FileTable,具体的FileTable的介绍可以参考微软的官网 http://msdn.microsoft.com/zh-cn/library/gg5090 ...
			 
						- 【进阶修炼】——改善C#程序质量(6)
			
90,不应为抽象类指定public的构造函数. 抽象类即使指定了public的构造函数,也是不能实例化的,编译通不过.抽象类的构造函数应该设定为protected,它的作用应该是初始化自己的成员,以及 ...
			 
						- 根据时间获取最新数据 SQL(每一个人或者每一项)
			
-- 方法1 select a.* from table1 a from table1 b where b.name=a.name and b.gdtime>a.gdtime) -- 方法2 s ...
			 
						- @Resource、@Autowired跟default-autowire区别联系
			
@Resource.@Autowired和default-autowire区别联系 今天看了一工程,里面既有default-autowire,又有@Autowired,还有@Resource.我就不明 ...
			 
						- SQLite 日期 & 时间
			
具体看http://www.runoob.com/sqlite/sqlite-date-time.html 不过实例介绍的不够详细,以下详细举例: SQLite包含了如下时间/日期函数:datetim ...