UVA-10271 Chopsticks (线性DP)
题目大意:在n个数中,找出k个三元组(a<=b<=c),求最小的(a-b)*(a-b)之和。
题目分析:将所有数从大到小排序,定义dp(i,j)表示前 i 个数中找出 j 个三元组时的最小和,则状态转移方程为dp(i,j)=min(dp(i-1,j),dp(i-2,j-1)),第二种决策是在前i-1个数构成j-1组三元组时必须还要有剩余的数的前提下才能做出。这道题和“搬寝室”和“筷子”类似,同样要填表求解并且注意边界。
代码如下:
# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long const int INF=1<<30; int m,n,a[5005];
int dp[5005][1010]; int solve()
{
m+=8;
for(int i=0;i<n;++i){
dp[i][0]=0;
for(int j=1;j<=m;++j) dp[i][j]=INF;
}
for(int i=2;i<n;++i){
for(int j=1;j<=m;++j)
if(i>=3*j-1) dp[i][j]=min(dp[i-1][j],dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]));
}
return dp[n-1][m];
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&m,&n);
for(int i=n-1;i>=0;--i)
scanf("%d",a+i);
printf("%d\n",solve());
}
return 0;
}
UVA-10271 Chopsticks (线性DP)的更多相关文章
- uva 10271 Chopsticks(dp)
题目连接:10271 - Chopsticks 题目大意:给出m和n, 然后给出n根筷子从小到大给出, 现在要从这n根筷子中选出m + 8组筷子, 每组筷子包括三根, 现在要求所有m + 8组每组筷子 ...
- uva 11584 Partitioning by Palindromes 线性dp
// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...
- uva 11552 Fewest Flops 线性dp
// uva 11552 Fewest Flops // // 二维线性dp // // 首先,在该块必须是相同的来信.首先记录每块有很多种书 // 称为是counts[i]; // // 订购f[i ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
随机推荐
- 你真的了解微服务架构吗?听听八年阿里架构师怎样讲述Dubbo和Spring Cloud微服务架构
微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然微服务架构没有公认的技术标准和规范或者草案,但业 ...
- 20145336《网络对抗技术》Exp6 信息搜集技术
20145336张子扬 <网络对抗技术> 信息搜集与漏洞扫描 实验内容 使用whois进行域名注册信息查询,使用nslookup进行域名查询 实现对IP地理位置的查询 使用PING.nam ...
- linux内核分析 第7章读书笔记——《深入理解计算机系统》
第七章 链接 --<深入理解计算机系统> 链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或拷贝)到存储器并执行. 一.编译器 大多数编译系统提供编译驱动 ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- AP聚类算法
一.算法简介 Affinity Propagation聚类算法简称AP,是一个在07年发表在Science上的聚类算法.它实际属于message-passing algorithms的一种.算法的基本 ...
- pip install MySQL-python
在win7下安装了python后,想安装python-mysql,使用pip安装出现如下问题: pip install MySQL-pythonbuild\lib.win-amd64-2.7\_mys ...
- define和typedef
#define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查,不关含义是否正确照样带入,只有在编译已被展开的源程序时才会发现可能的错误并报错. 所以define后加分号,不然会把分号也会一 ...
- MIMO雷达比幅单脉冲测角精度分析(系统工程与电子技术)
MIMO雷达比幅单脉冲测角精度分析(系统工程与电子技术)
- 【传输对象】kafka传递实体类消息
工具类 负责对象字节数组的相互转换,传输数据用 package com.yq.utils; import java.io.ByteArrayInputStream; import java.io.By ...
- BZOJ5189: [Usaco2018 Jan]Cow at Large 贪心+LCA
BZOJ没有题面QAQ,题目链接 洛谷有:题目链接 这题首先要读懂题..(洛谷的翻译有点迷 就是指定根节点,然后可以在叶子结点放个人,然后奶牛在根,问最少要在叶子结点放多少人才能让奶牛走不到叶子结点( ...